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I.  INRTODCUCTION 

This Idea Award (DAMD17-03-1-0023, entitled “Intensity Modulated Radiation Treatment of 

Prostate Cancer Guided by High Field MR Spectroscopic Imaging”) was awarded to the principal 

investigator (PI) for the period of May 1, 2003—April 30, 2006. This is the final report for the grant. The 

goal of this project is to establish biologically conformal - as opposed to anatomically conformal - IMRT as 

a viable modality through integration with 3T magnetic resonance spectroscopic imaging (MRSI) to more 

effectively kill prostate tumor cells. The underlying hypothesis driving this work is that the MRSI-guided 

IMRT will provide substantially improved dose distributions required to achieve greater local tumor 

control while maintaining, or reducing, complications to sensitive structures. The specific aims of the 

project are: (1) To establish a robust procedure for registering and mapping of MR spectroscopic data to 

CT/MRI images for prostate irradiation. (2) To develop an inverse planning system for MRSI-guided 

IMRT prostate treatment and demonstrate the feasibility of concurrent dose escalation to intraprostatic 

lesion(s) through a set of phantom studies and at least two previously treated prostate cases who had 

undergone CT/MRSI scans.  Under the generous support from the U.S. Army Medical Research and 

Materiel Command (AMRMC), the PI has contributed significantly to prostate cancer research by applying 

physics and engineering knowledge to prostate cancer research. A number of significant conference 

abstracts and refereed papers have been resulted from the support. The preliminary data obtained under the 

support of the grant has also enabled the PI to start new research initiatives, in particularly, in adaptive 

prostate radiation therapy. The past year’s research activities of the PI are highlighted in the following. 

 
II. RESEARCH AND ACCOMPLISHMENTS 

In current clinical practice, radiation treatment planning, performed under the guidance of MRI or 

CT images, is aimed at delivering a uniform dose to the whole prostate gland. This treatment scheme 

tacitly assumes that biology distribution in the prostate target is spatially uniform, mainly because of the 

lack of an effective imaging tool to differentiate regions of cancer and normal prostatic epithelium1-3. In 

reality, because radiation is toxic, the conventional treatment method often leads to clinically significant 

side effects and complications. Furthermore, the approach seriously limits the dose deliverable to the 

cancerous cells because the risk of developing later gastrointestinal and genitourinary complications 

increases significantly as the dose to the prostate is escalated. Therefore, many patients are treated with 

sub-optimal doses despite of the well-known fact that the survival probability of the patients can be greatly 

enhanced if radiation dose could be escalated. New treatment schemes are necessary to safely escalate 

radiation dose to the prostate without damaging the sensitive structures.  
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Recent developments of functional/metabolic imaging techniques are making it increasingly 

possible to identify the cancerous region(s) in the prostate4-6. Simultaneously, a new modality of radiation 

therapy, intensity modulated radiation therapy (IMT) 7, 8, has recent emerged, which provides us with 

unprecedented means to produce customized 3D dose distributions with sub-centimeter resolution. The 

goal of this project is to develop enabling tools for integrating MRSI and IMRT to selectively escalate 

radiation doses to the intraprostatic lesions. Successful completion of the project will lay the foundation for 

the next generation IMRT treatment of prostate cancer and provide radiation oncologists with a 

significantly improved means of delivering biologically conformal doses of ionizing radiation to the 

prostate gland while maintaining or reducing the dose to the adjacent bladder and rectum. When fully 

implemented, the system will allow us to destroy tumor cells more intelligently without unnecessarily 

compromising the tolerance of the adjacent normal structures. It will thus have widespread impact on 

prostate cancer management.  

Toward improving prostate radiotherapy we have made significant progress in integration of various 

novel imaging modalities into treatment planning process and contributed greatly in the battle against 

prostate cancer. The stated goals of the proposed study have been fulfilled completely and several new 

initiatives are resulted. The research accomplishments are summarized below. 

 

II.1 Refinement of 3T endorectal-coil based MRSI data acquisition techniques: Robust prostate MRSI 

plays an important role in biologically conformal radiation therapy (BCRT)9. We have made effort in 

enhancing the performance of 3T  MRSI data acquisition developed by our group6. Our method is based on a 

2D J-resolved acquisition to better identify the citrate and choline resonances.  These radio frequency (RF) 

pulses, consisting of a match 90-180 spectral spatial pair, are optimized for choline imaging while 

minimizing peak RF power constraints that typically limit 3T body MRI.  We have systematically and 

quantitatively evaluated the 3T volumetric spiral MRSI pulse sequences and optimized the sequence for 

high spatial resolution, minimum acquisition time, and maximum information content. The sequence for 

imaging choine and citrate has been tested on several subjects. The new imaging tool showed significant 

potential for improved treatment target definition. This work has been published in Magnetic Resonance 

Imaging in Medicine (Apendex-1). 

 

II.2 Development of image registration techniques: Image registration is at the foundation of multi-

modality image-guided radiation therapy because it is a necessary step to map imaging information 

acquired by a new imaging modality onto simulation CT images for treatment panning.  We have provided 
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viable solutions to this longstanding problem and substantially improved the current rigid and deformable 

image registration techniques. Progress includes: (i) control-volume based image registration10; (ii) 

multistage image registration11, 12; and (iii) deformable registration with incorporation of a priori system 

knowledge13. Several important papers on the subject have been published or submitted for publication 

(Appendix-3, -5, -6,  -7, and –10). In (i), we proposed a technique that allows us to automate the selection 

of control point pairs in conventional landmark based registration. In this approach, instead of attempting 

to find the correspondences of the control regions in the reference image through user interaction, we map 

each control volume to the corresponding parts of the reference image by using an automated image 

registration algorithm. The conventional automated image registration algorithm is then used to complete 

the image registration process with the guidance of auto-determined control points. The approach is robust 

and has great potential for clinical MRI/MRSI-CT registration (Apendix-6). In (ii), a multiscale image 

registration technique is developed for the registration of medical images that contain significant levels of 

noise (Apendix-5 and –10).  Experiments using mean squares, normalized correlation, and mutual 

information optimal linear registration are presented that determine the noise levels at which registration 

using these techniques fails. Further experiments in which classical denoising algorithms are applied prior 

to registration are presented, and it is shown that registration fails in this case for significantly high levels 

of noise, as well.  In (iii), we investigated a strategy of using a priori knowledge of the system to reduce 

the dimensionality of the deformable image registration problem and to speed up the registration 

calculation. Conventional deformable registration treats all image volume equally and the calculations are 

“brute-force” in nature. In reality, some regions can be mapped between the moving and fixed images 

with higher confidence than others. This knowledge is incorporated to greatly facilitate the BSpline (or 

other models) deformable calculation. In the process of warping the moving image to optimally match the 

two input images, only those deformations that do not modify the pre-established associations of the 

control volumes are permissible. This significantly reduces the search space and improves the 

convergence behavior of the gradient-based iterative optimization calculation. The proposed algorithm is 

evaluated by using digital phantoms and patient CT images. The deformable registration algorithm 

developed in this project was also applied to several other image-guided radiation therapy projects, such 

as radiation dose reduction in 4D CT14, 15, image interpolation in 4D CT16, onboard CT-based prostate 

IMRT dose validation (this work will be published in Jan. 2007 issue of Physics in Medicine and Biology, 

see Apendix-9 for detail) and electron density mapping from simulation CT to CBCT17, 18. 
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II.3 Inverse planning for biologically conformable radiation therapy (BCRT):  It is well known that the 

spatial biology distribution in most tumors and sensitive structures is heterogeneous1-3. Recent progress in 

biological imaging including MRSI is making the mapping of this distribution increasingly possible. We 

have established a theoretical framework to quantitatively incorporate the spatial biology data into IMRT 

inverse planning (Appendix-2). We, for the first time, derived a general formula for determining the 

desired dose to each tumor voxel for a known biology distribution of the tumor based on a linear-quadratic 

(LQ) model9, 19. The desired target dose distribution was then used as the prescription for inverse 

planning. An objective function with the voxel-dependent prescription was constructed with incorporation 

of the nonuniform dose prescription. The functional unit density distribution in a sensitive structure is also 

considered phenomenologically when constructing the objective function. Our calculations revealed that it 

is technically feasible to produce deliberately nonuniform dose distributions with consideration of 

biological information. A comparison of the new planning scheme with that of existing techniques 

suggested that the new BCRT technique significantly improves the tumor control probability (TCP) while 

reducing or keeping the normal tissue complication probability (NTCP). Contractually, this study 

completes the tasks 3.1 and 3.2 (together with study II.4 described below). BCRT incorporates patient 

specific biological information and provides an outstanding opportunity for us to truly individualize 

radiation treatment and to intelligently escalate dose in prostate radiation therapy.  

 
II.4 Image guided adaptive IMRT for improved prostate cancer treatment: With the development of 

highly conformal prostate radiation therapy techniques such as IMRT and BCRT, how to accurately 

deliver the high radiation dose to the prostate target(s) and verify the dose distribution while sparing the 

sensitive structures becomes a major concern. To ensure what is planned on computer can be realized in a 

clinical setting, we have (a) performed a series of dosiemtric measurements to validate the spatially non-

uniform doses generated using BCRT inverse planning, and (b) developed an adaptive strategy for 

improved prostate radiotherapy (Appendix-8, –9, -11 and -12). Newly emerged onboard cone beam CT 

(CBCT) is used to acquire the volumetric anatomical information of a patient prior to treatment on a 

routine basis.  The IMRT treatment plan is then adaptively modified with consideration of organ 

deformation and delivered doses. An inverse planning system based on dynamic optimization algorithm 

has been established 20, 21. Image transfer from the Varian Trilogy accelerator with onboard CBCT 

capability has been established and dosimetric validation strategy has been developed23, 24. With the image 

registration technique described above, the CBCT can be registered to the simulation CT so that the 

prostate and seminal vesicle (SV) targets, the involved sensitive structures, and biologically active tumor 
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regions identified by MRSI can be mapped to the CBCT for adaptive replanning. The registration 

technique (Apendix-6 and –7) is also employed to establish a voxel-to-voxel correspondence between the 

CT/CBCTs for the cumulative dose calculation. With the margins used in current prostate IMRT, we 

found that SV, bladder and rectum doses benefited most from the adaptive therapy basis23, 24. In addition, 

our study suggested that correcting the patient’s daily setup just through the translation and rotation is 

often not enough and accounting for the organ deformation is important, especially if the target margin is 

to be reduced for dose escalation or for hypofractionated treatment22-24. 

 
III. KEY RESEARCH ACCOMPLISHMENTS 

• Refined the endorectal coil-based 3T MRSI technique for prostate imaging. 

• Provided viable solutions to the longstanding deformable image registration problem and made it 

possible to accurately map MRI/MRSI information to treatment planning CT images. 

• Setup a novel framework for BCRT inverse planning. 

• Developed inverse planning system for onboard CBCT based adaptive IMRT planning. 

• Established a procedure for BCRT dose verification and image guided adaptive prostate IMRT. 

 

IV.  REPORTABLE OUTCOMES 

The following is a list of publications resulted from the grant support during the last funding cycle. 

Copies of the publication materials are enclosed with this report. 

Refereed publications: 

1. Kim D, Mayer D., Xing L, Daniel B, Margolis, D., Spielman D., “In vivo detection of citrate for 
prostate cancer at 3 Tesla”, Magnetic Resonance Imaging in Medicine, 53, 1177-1182, 2005. 

2. Yang Y and Xing L: “Towards biologically conformal radiation therapy (BCRT): selective IMRT dose 
escalation under the guidance of spatial biology distribution ”. Medical Physics 32, 1473-84, 2005. 

3. Schreibmann E and Xing L: “Narrow band deformable registration of prostate MRI/MRSI and CT 
studies”.  International Journal of Radiation Oncology, Biology, Physics 62, 595–605, 2005. 

4. Schreibmann E and Xing L: “Dose-volume based ranking of incident beam directions and its utility in 
facilitating IMRT beam placement”.  International Journal of Radiation Oncology, Biology, Physics 
63, 584-593, 2005. 

5. Paquin D, Levy D, Schreibmann E., Xing L, Multistage image registration, Mathematical Biosciences 
and Engineering 3, 389-418, 2006. 

6. Schreibmann E, and Xing L: “Image registration with auto-mapped control volumes”.  Medical 
Physics 33, 1165-79, 2006. 

7. Schreibmann E, Chen G, and Xing L: “Image interpolation in 4D CT”.  International Journal of 
Radiation Oncology, Biology, Physics 64, 1537-1550, 2006. 

8. Pawlicki T., Kim G, Hsu A, Cortutz C, Boyer A, Xing L, King C.R., Luxton G, Investigation of Linac-
based Image-guided Hypofractionated Prostate Radiotherapy, Medical Dosimetry 31, 91-122, 2006. 
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9. Loo B, Draney MT, Sivanadan R, Ruehm S, Pawlicki T, Xing L, Herfkens RJ, Q.T. Le: “Indirect MR 
lymphangiography using conventional gadolinium contrast”, International Journal of Radiation 
Oncology, Biology, Physics, in press, 2006. 

10. Xing, L, Thorndyke B, Schreibmann E, Li T, Yang Y, Kim G., Luxton G, Koong, A, Overview of 
image guided radiation therapy (IGRT), Medical Dosimetry (invited review) 31, 91-122, 2006. 

11. Thorndyke B, Schreibmann E., Koong A., and Xing L: “Enhancing the performance of 4D PET 
imaging by retrospective stacking”. Medical Physics 51, in press, 2006. 

12. Li T, Munro P, McGuiness C, Yang Y, Chao M, Loo B, and Koong A, Xing L, Four-dimensional 
cone-beam computed tomography using an onboard imager, Medical Physics 33, submitted, 2006. 

13. Chao M, Schreibmann E., Li T, Xing L, Automated contour mapping for IGRT, Medical Physics, 
submitted, 2006. 

14. Paquin D, Levy D, Xing L, Multistage deformable image registration, IEEE Trans Med Imag, 
submitted, 2006. 

15. Yang Y, Schreibmann E., Li T, Xing L, Evaluation of dosimetric accuracy of kV cone beam CT-based 
dose calculation, Physics in Medicine and Biology, in press (to appear in Jan.  2007). 

 
Book Chapters: 
1. Xing L, Yang Y, and Spielman D, Molecular/Functional Image-Guided Radiation Therapy, in IMRT 

Handbook and Clinical Applications, T. Bortfeld, R. Schmidt-Ulrich, We De Neve (editors), Springer-
Verlag Heidelberg, Berlin, 187-198, 2006. 

2. Li J and Xing L, Radiation Dose Planning, Computer-Aided, in Encyclopedia of Medical Devices and 
Instrumentation, John G. Webster (editor),  John Wiley & Sons, in press. 

 
Conference abstract: 
1. Xing, L. and Spielman D, Integration of MRI/MRSI into Radiation Therapy Treatment Planning, 2005 

AAPM Annual Meeting, Seattle, WA (invited talk). 
2. Schreibmann E. and Xing L., Registration of prostate MRI/MRSI and CT studies using narrow band 

approach, 2005 AAPM Annual Meeting, Seattle, WA. 
3. Schreibmann E. and Xing L., EUD-based beam orientation optimization, 2005 AAPM Annual 

Meeting, Seattle, WA. 
4. Xing L, Levy, D. and Yang Y., Incorporating clinical outcome data into inverse treatment planning, 

2005 AAPM Annual Meeting, Seattle, WA. 
5. Yang Y. and Xing L, Prescription for biologically conformal radiation therapy, 2005 AAPM Annual 

Meeting, Seattle, WA. 
6. Schreibmann E, and Xing L: “Image registration with auto-mapped control volumes”. 2005 ASTRO 

annual meeting, Denver, CO.  
7. Yang Y and Xing L: “Optimization of radiation dose-time-fractionation scheme with consideration of 

tumor specific biology”. 2005 ASTRO annual meeting, Denver, CO.  
8. Yang Y, Levy D, and Xing, L, Relationship between EUD-based and dose-based inverse planning, 

2006 AAPM Annual Meeting, Orlando, FL, 2006. 
9. Y Yang, N Yue, W Fu, X Li, D Heron, M Huq, L Xing, Time-Resolved 4D Dynamic Arc Therapy, 

2006 AAPM Annual Meeting, Orlando, FL, 2006. 
10. M Chao, E Schreibmann, T. Li, L. Xing, Knowledge-Based Auto-Contouring in 4D Radiation 

Therapy, 2006 AAPM Annual Meeting, Orlando, FL, 2006. 
11. Q Xu, Z He, R Hamilton, L Xing, Registration of X-Ray Portal Images with 4DCT DRRs for Patient 

Setup Verification, 2006 AAPM Annual Meeting, Orlando, FL, 2006. 
12. A de la Zerda, B Armbruster, L Xing, A New Dose Optimization Algorithm for Adaptive Radiation 

Therapy, 2006 AAPM Annual Meeting, Orlando, FL, 2006. 
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13. M Chao,T Li, L Xing, Enhanced 4D CBCT Imaging for Slow-Rotating On-Board Imager, 2006 
AAPM Annual Meeting, Orlando, FL, 2006. 

14. E Schreibmann, B Thorndyke, L Xing, Intra- and Inter-Modality Registration of Four-Dimensional 
(4D) Images, 2006 AAPM Annual Meeting, Orlando, FL, 2006. 

15. B Armbruster, A de la Zerda, L Xing, A New 4D IMRT Algorithm and Its Performance Analysis, 
2006 AAPM Annual Meeting, Orlando, FL, 2006. 

16. A Hsu, B Thorndyke, T Pawlicki, L Xing, Accuracy of Gated IMRT Delivery On the Varian Linac 
Using the Real-Time Position Management System, 2006 AAPM Annual Meeting, Orlando, FL, 2006. 

17. T Li, L Xing, P Munro, Y Yang, B Loo, A Koong, 4D Cone-Beam CT (CBCT) Using An On-Board 
Imager, 2006 AAPM Annual Meeting, Orlando, FL, 2006. 

18. C Wang, L Xing, Evaluation of Kv CBCT-Based Dose Verification, 2006 AAPM Annual Meeting, 
Orlando, FL, 2006. 

19. E Schreibmann, W Cai, X Chen, L Xing, Voxel-Based MicroCT-MicroPET Image Registration for 
Molecular Imaging Study, 2006 AAPM Annual Meeting, Orlando, FL, 2006. 

20. S Kamath, E Schreibmann, L Xing, Deformable Image Registration with Auto-Mapped Control 
Volumes, 2006 AAPM Annual Meeting, Orlando, FL, 2006. 

21. Daly M, Lieskovsky Y, Pawlicki T, Yau J, Pinto H, Kaplan M, Fee W, Koong A, Goffinet D,  Xing L, 
Le Q, Evaluation of patterns of failure and subjective salivary function in patients treated with IMRT 
for head and neck squamous cell carcinomas, 2006 ASCO Annual Meeting, Atlanta, GA, 2006. 

22. Yang Y, Levy D, and Xing, L, Voxel-based penalty scheme for IMRT inverse planning, 2006 World 
Congress on Medical Physics and Bioengineering, Seoul, Korea, 2006. 

23. Xing, L. and Spielman D, MRI/MRSI and Radiation Therapy Treatment Planning, 2006 World 
Congress on Medical Physics and Bioengineering, Seoul, Korea, 2006 (invited talk). 

24. Xing, L., Li T, Thorndyke B, Schreibmann E., Chao M., and Spielman D, Integration of Molecular 
Imaging into Radiation Therapy Treatment Planning, 2006 AAPM Annual Meeting, Orlando, FL 
(invited talk). 

25. Chao M, Schreibmann, Li T, and Xing L: “Automated contour mapping for IGRT”. 2006 ASTRO 
annual meeting, Philadelphia, PA. 

26. Kamath S, Schreibmann E, and Xing L: “Automated contour mapping for IGRT”. 2006 ASTRO 
annual meeting, Philadelphia, PA. 

27. A de la Zerda,, B Armbruster, and Xing L: “Inverse planning for adaptive radiation therapy”. 2006 
ASTRO annual meeting, Philadelphia, PA. 

28. Xing L, A de la Zerda, B Armbruster, Li T, Chao M, Hancock S, King C.: “Adaptive radiation therapy 
for improved prostate radiation therapy”. 2006 ASTRO annual meeting, Philadelphia, PA. 

29. Xing L, “Image guided radiation therapy”, 2006 ASTRO annual meeting, Philadelphia, PA (invited 
talk). 

 
 

V. CONCLUSION 

In this project we have successfully completed all tasks listed in the Statement of Work of the 

proposal. We have shown that biologically conformable radiation therapy (BCRT) is technically feasible 

and advantageous as compared with current treatment strategy. Coupled with biological imaging 

techniques such MRSI, the approach has significant potential to substantially improve the existing prostate 

radiation therapy. The technical tools developed in this project greatly facilitate the planning, delivery, and 

quality assurance of the MRSI-guided prostate treatment. Translation of the newly developed techniques to 
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routine clinical practice is being planned at our Hospital and it is expected that these techniques will lead to 

positive impact to clinical prostate management worldwide. 
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In Vivo Prostate Magnetic Resonance Spectroscopic
Imaging Using Two-Dimensional J-Resolved PRESS at 3 T

Dong-hyun Kim,1* Daniel Margolis,1 Lei Xing,2 Bruce Daniel,1 and Daniel Spielman1

In vivo magnetic resonance spectroscopic imaging of the pros-
tate using single-voxel and multivoxel two-dimensional (2D)
J-resolved sequences is investigated at a main magnetic field
strength of 3 T. Citrate, an important metabolite often used to
aid the detection of prostate cancer in magnetic resonance
spectroscopic exams, can be reliably detected along with the
other metabolites using this method. We show simulations and
measurements of the citrate metabolite using 2D J-resolved
spectroscopy to characterize the spectral pattern. Further-
more, using spiral readout gradients, the single-voxel 2D J-
resolved method is extended to provide the spatial distribution
information as well all within a reasonable scan time (17 min).
Phantom and in vivo data are presented to illustrate the
multivoxel 2D J-resolved spiral chemical shift imaging
sequence. Magn Reson Med 53:1177–1182, 2005. © 2005
Wiley-Liss, Inc.

Key words: magnetic resonance spectroscopic imaging; pros-
tate cancer; spiral readout gradients; 2D J-resolved spectros-
copy; citrate; polyamine

In addition to the morphologic information provided by
magnetic resonance imaging, the additional information
gained using magnetic resonance spectroscopy (MRS) and
magnetic resonance spectroscopic imaging (MRSI) in-
creases the specificity of the examination for prostate can-
cer (PCa). In these examinations, the ratio of (choline �
creatine) to citrate is often regarded as a marker for PCa (1).
To date, MRSI protocols for PCa detection have been well
established at a main magnetic field strength of 1.5 T (2).

The advent of higher field strength scanners provides
the potential for improvement over 1.5-T systems due to
the inherent increase in the signal-to-noise ratio (SNR). For
PCa exams using MRS/MRSI methods, this advantage can
be exploited in various forms, which include using higher
spatial resolution acquisitions to increase the accuracy of
localization of the cancerous tissues (3). Scan times can
also be made shorter compared to 1.5 T for the same SNR,
thereby reducing the overall MR examination time. The
extension of 1.5-T MRS/MRSI protocols for usage in 3-T
PCa can therefore have potential merits.

However, the process of advancing to higher field
strength requires several considerations. For clinical
prostate examinations using spectroscopic techniques,
one of the issues that arise involves the detection of the
citrate metabolite. Strong coupling of the AB system of
citrate induces echo-time-dependent modulations of the
signal response, which differs significantly with field
strength (4,5). One method which exploits the echo time
dependencies is the 2D J-resolved spectroscopic se-
quence (6 – 8). Acquisitions at incremental echo times
can be gathered to obtain the coupling information of
such metabolites. Information of uncoupled metabolites
can also be gathered. Another advantage of using 2D
J-resolved sequences in the case of prostate is the poten-
tial to separate the polyamine metabolite from the cre-
atine and choline peaks (9,10). The three metabolites
resonate at similar frequencies, which make them hard
to differentiate using normal acquisitions. But, since the
polyamines are also strongly coupled, the 2D J-resolved
method can provide additional information, which can
be used to distinguish between creatine and choline. In
addition, 2D J-resolved spectroscopy has been used to
reduce sideband artifacts for applications in the brain
and regions outside of the brain such as the breast
(11,12). Finally, the acquisitions from multiple echo
times can also help determine the T2 values of metabo-
lites of interest in addition to water.

To take full advantage of this method, collecting the
spatial distribution information of the metabolites will
be preferred over single-voxel techniques. Although
phase encoded MRSI methods have been used in obtain-
ing the spatial information, this can be problematic
when combining with the 2D J-resolved method since
the minimum total scan time will be increased propor-
tional to the number of echo time steps used. Therefore,
a different approach that can reduce the minimum total
scan time needs to be established. One of the spatial
encoding methods that achieve such characteristic is the
spiral readout MRSI (13). Using spiral MRSI, the spatial
coverage can be controlled with high efficiency, thereby
significantly decreasing the minimum total scan time
compared to the phase encoded method. The additional
time available can therefore be used to gather the 2D
J-resolved spectroscopic data (14,15).

This work involves the study of 2D J-resolved single-
voxel and multivoxel spectroscopic acquisition methods
targeted for clinical application of PCa detection. We first
explore the use of a 2D J-resolved single-voxel spectro-
scopic sequence to illustrate the detection of the citrate
metabolite and to observe the characteristics of the J-cou-
pled spectral pattern. Multivoxel 2D J-resolved acquisi-
tions are performed using spiral-based MRSI.
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METHODS

Simulations and phantom measurements were conducted
assuming a 2D J-resolved acquisition using a PRESS exci-
tation scheme. For the simulations, we solved the full
density matrix of strongly coupled two-spin systems with
nonselective 180° pulses. The timing of the PRESS se-
quence was assumed to be 90°–[tint]–180°–[t1/2]–180°–[t1/
2 � tint]–t2 (acquire), where tint was 10 ms. The J-coupling
constant was assumed to be 15.4 Hz with a chemical shift
value of 0.12 ppm (� 16.6 Hz at 3 T) (16). Also, the T2 was
assumed to be 200 ms with a line width of 10 Hz. For the
actual single-voxel 2D J-resolved measurements, a phan-
tom composed of citrate, creatine, and choline metabolites
was used to emulate the existence of cancerous tissue. In
both cases, the echo time spacing was adjusted to be 7.8 ms
for a total of 64 steps from 35 to 534 ms in the F1 domain
(Fourier domain corresponding to t1 dimension). This re-
sulted in a 2-Hz spectral resolution with a bandwidth of
128 Hz in the F1 domain. The spectral bandwidth in the F2
domain (Fourier domain corresponding to t2 dimension)
was 5000 Hz with 2048 data point acquisitions.

In vivo data were collected from a patient suspicious for
recurrent PCa using the single-voxel 2D J-resolved tech-
nique. Single-voxel 2D J-resolved spectroscopic data using
the PRESS sequence were acquired from two different
regions near the peripheral zone of the prostate. All PRESS
sequences were preceded by CHESS water suppression
and very selective saturation pulses for spatial saturation
(17). The voxel size chosen was 1 � 1.12 � 1.08 cm �
1.2 cc. Four acquisitions were averaged per incremental
echo time for a total scan time of 8 min (TR � 2 s) for each
voxel.

Multivoxel 2D J-resolved data using spiral MRSI were
also acquired. A detailed description of the spiral MRSI

sequence can be found in Ref. 14. First, phantom data were
collected to demonstrate the feasibility of obtaining spatial
as well as the coupling information followed by in vivo
data collection. Spiral readout gradients were applied to a
PRESS excitation sequence. The spirals were designed
using the formula given by Glover (18). A 32 � 32 spatial
matrix covering a 24-cm field of view was used. Sixteen
spatial interleaves of the spirals were used to acquire the
required k-space. The number of spirals repeated during
each acquisition was 256 lobes, which resulted in a 950-Hz
spectral bandwidth in the F2 domain. Sixteen different
echo times starting from 35 to 285 ms with 15.6-ms inter-
vals were used to collect F1 domain information, which
accounted for F1 spectral resolution of 4 Hz and a band-
width of 64 Hz. Collected data were processed by first
gridding in the kx, ky, and t2 domains followed by a four-
dimensional FT into the x, y, F1, and F2 domains. In
summary, each of the 32 � 32 reconstructed voxels had 16
spectra, which covers the F1 dimension from J(�32) Hz to
J(28) Hz. The nominal voxel size was 0.59 cc while the
total scan time to acquire the necessary k-space and the t1
space data was 17 min (TR � 2 s).

For the multivoxel 2D J-resolved experiment, phantom
data were acquired using the head coil while in vivo data
were collected with the body coil for excitation followed
by a rigid endorectal coil for signal reception. A phantom
comprised of creatine, choline, and citrate solution was
built for this study, which was surrounded by lipids to
confirm the lipid suppression capabilities. For the in vivo
exams, a high-resolution (512 � 512) T2-weighted ana-
tomic image was obtained and a region of interest covering
most of the prostate was selected for the PRESS sequence.
To date, seven patients who were suspicious of prostate
cancer were referred to by a pathologist and imaged using

FIG. 1. 2D J-resolved spectra obtained from sim-
ulations (left) and phantom measurements (right) at
3 T. The echo time interval was 7.8 ms starting
from 35 ms for 64 steps. Choline and creatine
metabolites were added for the phantom measure-
ment. Due to the modulations as a function of echo
time, the 2D J-resolved spectra show a strong
signal from the citrate metabolite at reconstructed
lines beyond the J(0) Hz line for both simulated and
measured data with similar spectral patterns. In
this respect, the detection of the citrate resonance
can be made outside of the J(0) Hz line using the
2D J-resolved acquisition.
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a 3 T GE Signa scanner (GE Health Care, Waukesha, WI).
All in vivo studies were conducted under IRB guidelines
and with informed consent.

RESULTS

Figure 1 shows the simulated 2D J-resolved citrate spectra
(left) along with the reconstructed 2D J-resolved data ac-
quired with a phantom (right) using the single-voxel 2D
J-resolved acquisition. Spectra corresponding to the F1
domain in the range of J(�12) to J(12) Hz were extracted
where most of the energy is concentrated. In both cases,
due to the modulations occurring as a function of echo
time, resonances are clearly seen beyond the J(0) line for
the citrate metabolite. Individual spectra from each F1 line
reveal the similarity of the patterns between the simulated
and measured results of the citrate. The J(0) line, also
referred to as the TE-averaged line, has a slight negative
peak at the citrate position, which is due to the strong
negative peaks at echo times ranging from 60 to 120 ms.

Two single-voxel 2D J-resolved spectra from an in vivo
subject are presented in Fig. 2. The patient had a prior
history of prostatic adenocarcinoma, which was treated by
external beam radiation. The two regions that were se-
lected are shown in the anatomic T2-weighted images
along with the resulting J-resolved spectra. The spectra

obtained from the right side of the subject (Fig. 2a) dis-
plays negligible citrate metabolite intensity compared to
the creatine and choline resonances located near the
3.0-ppm region. In comparison, the spectra from the left
side of the subject (Fig. 2b) reveal the presence of citrate as
seen from the modulations occurring in the reconstructed
F1 lines along with the creatine and choline metabolites.
These two comparisons show that with the 2D J-resolved
acquisition method, the strongly coupled citrate metabo-
lite can be resolved while the presence of other metabo-
lites can be established. Even though the number of radio-
frequency (RF) phase cycling steps has been reduced to 4
in this case, strong residual signal from outside of the
PRESS box is not observed.

In Fig. 3, results obtained from the multivoxel 2D J-
resolved sequence via spiral MRSI are shown. In Fig. 3a,
an image of the phantom that was used for the experiment
is given. In Fig. 3b, the metabolite spectra corresponding to
the voxel selected in Fig. 3a are given. We extracted the
TE-averaged line from each reconstructed voxel and man-
ually phased them. The TE-averaged spectra show the
well-resolved spatial distribution of the metabolites with a
slight negative peak of the citrate as in the case of the
single-voxel experiment. Spatial saturation pulses elimi-
nated most of the lipids, as can be seen from the absence of
any sidebands arising from the lipids. In Fig. 3c, lines from

FIG. 2. Single-voxel 2D J-resolved spec-
troscopy results obtained in vivo from a
subject suspicious of recurrent PCa. Two
voxels were selected for the examination as
shown in the T2-weighted images. The re-
constructed spectra of several F1 lines are
shown. In (a), even though the presence of
creatine and choline metabolites is evident,
there is no visible citrate. As for the region
shown in (b), the citrate is visible (2.6 ppm
region from J(�10) to J(12) Hz line) in the
spectra while other metabolites are also
present. This shows that the 2D J-resolved
spectroscopy can be useful for in vivo de-
tection of citrate.
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J(�28) to J(32) Hz that were reconstructed for the voxel
highlighted in Fig. 3b are shown. The J-resolved F1 do-
main lines clearly depict the presence of citrate located
near the 2.5-ppm region.

Figure 4 shows spiral readout 2D J-resolved MRSI re-
sults obtained from an in vivo subject who had been re-
ported as having a Gleason score of 3 � 3. The T2-weighted
image is shown in Fig. 4a with a grid representing the
displayed voxels shown in Fig. 4b and c. Reconstructed
spectra corresponding to the TE-averaged lines are given
in Fig. 4b. As with the case of the phantom experiment, the
TE-averaged line largely represents spectra from metabo-
lites that are uncoupled. This is illustrated by the exis-
tence of choline and creatine metabolites that can be seen
near the middle region of the displayed voxels. In Fig. 4c,
the spectra corresponding to J(8) Hz are displayed where
the citrate metabolite can be resolved. This is illustrated
near the upper left region of the prostate where several
voxels show a peak near the 2.5 ppm region, which corre-
sponds to the citrate metabolite. For several voxels, how-
ever, lipid contamination can be visible near the 2.5-ppm
region, which compromised the detection of citrate.

Figure 5 shows spiral readout 2D J-resolved MRSI re-
sults obtained from another in vivo subject who had been
reported as having adenocarcinoma of the prostate with a
Gleason score of 3 � 4. The TE-average lines in Fig. 5a
show voxels of signal contributing from creatine and cho-
line as well as polyamines residing in J(0) Hz. In Fig. 5c,
the spectra corresponding to J(8) Hz line are displayed.
The spectra show clear visualization of the citrate metab-
olite. In addition, polyamines are seen to be resolved as
well. Of the seven patients examed, five patients had ob-
servable signal from any of the metabolites of interest.

DISCUSSION

We have shown the application of a 2D J-resolved PRESS
sequence, which can aid the detection of PCa at the field
strength of 3 T. In the first part of the paper, simulations
and phantom measurements showing the characteristics of
the citrate metabolite resonance for 2D J-resolved single-
voxel acquisitions were illustrated, which showed the
strong dependency with echo time due to its strong cou-
pling. In the second part spiral readout gradients were
applied to the 2D J-resolved PRESS sequence to obtain
additional spatial distribution information. The efficiency
of the spiral k-space trajectory makes it possible to cover
the whole k-space within a reasonable scan time.

For a truly feasible clinical protocol to be implemented,
several prerequisites need to be established, however. It is
important for a good spatial suppression pulse to be used
so that there are no aliasing or ringing artifacts. This prob-
lem has been demonstrated from the in vivo exam where
lipid sidebands interfered with the detection of metabo-
lites. This result is in comparison with the phantom re-
sults where good lipid suppression was accomplished. For
the phantom experiment, a head coil with a relatively
homogeneous RF profile and low power was used,
whereas this was not the case for the in vivo exam, which
used the body coil for excitation. Another important pre-
requisite is the main field homogeneity. The presence of
air inside the endorectal coil or near the prostate region
can degrade the homogeneity, leading to line broadening
and potential overlap of the choline and creatine metabo-
lites as seen in the in vivo example.

In this study, we addressed the issue of strong coupling
citrate peak using a 2D J-resolved spectroscopic acquisi-

FIG. 3. Phantom results using
spiral based multivoxel 2D J-re-
solved MRSI. A metabolite phan-
tom surrounded by lipid and wa-
ter was used (a). In (b), the metab-
olite spectra corresponding to
J(0) Hz are displayed from the se-
lected voxels shown in (a). The
TE-averaged spectra show the
well-resolved spatial distribution
of the metabolites. In (c), all the
reconstructed F1 lines for the
voxel highlighted in (b) are shown.
The F1 domain lines clearly depict
the presence of citrate near the
2.5-ppm region.
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FIG. 5. Results obtained from a
patient diagnosed with adeno-
carinoma of the prostate with a
Gleason score 3 � 4 using spiral-
based 2D J-resolved MRSI. (a)
T2-weighted image with a grid
representing the displayed vox-
els. (b) Reconstructed spectra
corresponding to the J(0) Hz lines.
The coexistence of choline, crea-
tine, and polyamine metabolites
can be seen. (c) Spectra corre-
sponding to the J(8) Hz line. Sev-
eral voxels show a clear peak
near the 2.5-ppm region corre-
sponding to citrate. Polyamines
can also be observed for several
voxels around the 3.1-ppm re-
gion.

FIG. 4. Results obtained from a
patient diagnosed with prostate
cancer with a Gleason score 3 �
3 using spiral-based 2D J-re-
solved MRSI. (a) T2-weighted im-
age with a grid representing the
displayed voxels. (b) Recon-
structed spectra corresponding
to the J(0) Hz lines. The existence
of choline and creatine metabo-
lites can be seen near the middle
region of the displayed voxels. (c)
Spectra corresponding to J(8) Hz
line from F1 domain. Several vox-
els show a peak near the 2.5-ppm
region at the upper left region,
which corresponds to citrate.
Lipid contamination can be visible
near the 2.5-ppm region for sev-
eral voxels.
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tion sequence. This can be dealt with in a different way as
recently shown using a J-refocused sequence (19). One of
the advantages of using the 2D J-resolved method includes
the potential to detect changes in the citrate coupling
constant, which can be used as another marker for PCa.
This coupling constant is believed to be related to the zinc
concentration, which is directly related to presence of PCa
(20). In addition, any information obtained from the sec-
ond spectral dimension, for example, from the polyamines
as seen, can add to the physiologic information of the
prostate tissue (9). On the negative side, a J-refocused
scheme would require many fewer acquisitions and can
achieve better SNR due to a shortened TE.

CONCLUSION

Single-voxel and multivoxel 2D J-resolved spectroscopy
methods have been demonstrated for in vivo prostate at
field strength of 3 T. Using the 2D J-resolved method,
strong coupling of citrate can be well resolved. For mul-
tivoxel 2D J-resolved spectroscopic imaging, spiral-based
readout sequences are used, which enable data acquisition
within a reasonable scan time.
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Towards biologically conformal radiation therapy „BCRT…: Selective IMRT
dose escalation under the guidance of spatial biology distribution

Yong Yang and Lei Xinga!
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It is well known that the spatial biology distributionse.g., clonogen density, radiosensitivity, tumor
proliferation rate, functional importanced in most tumors and sensitive structures is heterogeneous.
Recent progress in biological imaging is making the mapping of this distribution increasingly
possible. The purpose of this work is to establish a theoretical framework to quantitatively incor-
porate the spatial biology data into intensity modulated radiation therapysIMRTd inverse planning.
In order to implement this, we first derive a general formula for determining the desired dose to
each tumor voxel for a known biology distribution of the tumor based on a linear-quadratic model.
The desired target dose distribution is then used as the prescription for inverse planning. An
objective function with the voxel-dependent prescription is constructed with incorporation of the
nonuniform dose prescription. The functional unit density distribution in a sensitive structure is also
considered phenomenologically when constructing the objective function. Two cases with different
hypothetical biology distributions are used to illustrate the new inverse planning formalism. For
comparison, treatments with a few uniform dose prescriptions and a simultaneous integrated boost
are also planned. The biological indices, tumor control probabilitysTCPd and normal tissue com-
plication probability sNTCPd, are calculated for both types of plans and the superiority of the
proposed technique over the conventional dose escalation scheme is demonstrated. Our calculations
revealed that it is technically feasible to produce deliberately nonuniform dose distributions with
consideration of biological information. Compared with the conventional dose escalation schemes,
the new technique is capable of generating biologically conformal IMRT plans that significantly
improve the TCP while reducing or keeping the NTCPs at their current levels. Biologically con-
formal radiation therapysBCRTd incorporates patient-specific biological information and provides
an outstanding opportunity for us to truly individualize radiation treatment. The proposed formal-
ism lays a technical foundation for BCRT and allows us to maximally exploit the technical capacity
of IMRT to more intelligently escalate the radiation dose. ©2005 American Association of Physi-
cists in Medicine. fDOI: 10.1118/1.1924312g

Key words: inverse planning, biological model, TCP, NTCP, IMRT
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I. INTRODUCTION

Intensity modulated radiation therapysIMRTd has been use
clinically to provide a highly conformal radiation dose to
target volume while reducing the doses to the surroun
sensitive structures.1–13 The current IMRT inverse plannin
is typically aimed at producing a homogeneous target
under the assumption of uniform biology within the tar
volume. In reality, it is known that the spatial biology dis
butions in most tumors and normal tissues are rarely ho
geneous. To maximize the efficacy of IMRT, it is desirabl
take the inhomogeneous biological information into acc
and to produce customized nonuniform dose distribution
a patient specific basis. This type of radiation treatme
referred to as biologically conformal radiothera
sBCRTd.14–19 The simultaneous integrated boostsSIBd to
elective volumes recently appearing in the literature11,17,20

represents a simple example of BCRT. However, an und
ing deficiency of the current SIB approach is that the b
doses are based on previous experience, not patient-sp
biological information characterizing the spatial tumor b

den distribution.

1473 Med. Phys. 32 „6…, June 2005 0094-2405/2005/32 „6…/
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To establish the BCRT treatment planning scheme,
major aspects must be addressed:sid Determination of th
distribution of biological properties of the tumor and criti
structures;sii d Prescription of the desired dose distribut
for inverse planning; andsiii d Inverse planning to genera
most faithfully the prescribed nonuniform dose distribut
Recently spurred efforts in biological imaging, such as
itron emission tomographysPETd, single photon emissio
computed tomographysSPECTd, and magnetic resonan
spectroscopy imagingsMRSId, are aimed at providing sol
tions to the first problem.21–31 To give a few examples, th
clonogen density in malignant glioma can be obtained b
on the choline/creatine ratio through MRSI,29,30 tumor hy-
poxia can be quantified using PET imaging with fluorina
misonidazolesFMISOd,27,28 tumor proliferation rate can b
obtained based on the voxel activity level in DNA prolife
tion imagingse.g., fluoro-L-thymidine PETd,25,26,32and lung
functional importance distributions can be obtained by
fusion imaging.33 While the development of molecular ima
ing techniques is critically important in mapping out biolo

distributions, the successful integration of this information

14731473/12/$22.50 © 2005 Am. Assoc. Phys. Med.
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into IMRT planning through stepssii d and siii d is also indis
pensable to fully exploit the obtained biology information
improve patient care. In this study we focus our efforts
the last two problems, with the optimistic assumption
spatial biology distributions within a patient have alre
been determined from biological imaging or other me
Our goal is to establish a theoretical framework for qua
tatively incorporating the biological data into IMRT inve
optimization, and to show the advantage of the selective
escalation scheme in enhancing tumor control probab
sTCPd and reducing the normal tissue complication proba
ity sNTCPd. In conjunction with the rapid development
molecular imaging techniques, this study lays a techn
foundation for BCRT and provides a basis for clinically
alizing the new treatment strategy in the future.

II. METHODS AND MATERIALS

A. Biological characterization and nonuniform target
dose prescription

We assume that biological properties influencing radia
treatment are characterized phenomenologically by thre
diobiology parameters: clonogen densitysrd, radiosensitivity
sad, and proliferation ratesgd. Generally, these paramet
are voxel dependent. In this work we concentrate on
spatial variation within tumor, and ignore the time dep
dence of the last two parameters.

To accomplish BCRT, an important step is to derive
desired dose distribution that maximizes the cell kil
based onsr ,a ,gd metrics. In the case of uniform biology,
is well known that the target dose should be uniformly
tributed. It is, however, not clear at all what form of do
distribution should be used to maximize the cell killing
an arbitrary biology distribution. We start from a linear q
dratic sLQd model34–36 with inclusion of the tumor cell pro
liferation. According to this model, the tumor clonogen s
vival Si in a voxel of volumeVi after an irradiating doseDi is
given by

Si = riVi exps− ai8Di + giDTd, s1d

whereai8=aif1+di / sai /bidg, ri is the initial clonogen den
sity, di is the fractional dose,ai and bi are the linear
quadratic coefficients of the cell survival curve,gi =ln 2/Tp

is the cell proliferation rate,Tp is the potential cell doublin
time, andDT is the overall treatment time. The TCP o
voxel i can be expressed as

TCPi = expf− riVi exps− ai8Di + giDTdg. s2d

The TCP for the whole tumor is the product of the TCPi of
all voxels within the tumor volume, i.e.,

TCP =p
i

TCPi . s3d

For a given set ofhr ,a ,gj, the task is to find the dose d
tribution that maximizes the TCP. Because of the limita
of normal tissue dose tolerances, an arbitrarily high dos
the tumor cannot be achieved and certain constraints ne

36–41 36,37,40
be imposed. In line with previous researchers, we
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restrict the integral dose to the tumor volume to a cons
Mathematically, the constraint is written as

o
i

miDi = Et, s4d

wheremi is the mass of voxeli, andEt is the integral targe
dose.

With the above formulation, the task becomes the m
mization of the TCP under the constraints4d. The Lagrang
multiplier method is employed to solve the problem. In
approach, a function

LsTCP1, . . . TCPi, . . . d = p
i

TCPi + lSo
i

miDi − EtD , s5d

is introduced, wherel is the Lagrange multiplier, and t
solution is obtained by solving the equations

]L

]TCPi
= 0. s6d

When mass and volume are equal for all voxels in the ta
using a process similar to Ebert and Hoban40 ssee the Appen
dixd, we obtained a general formula for determining the
sired dose,D0

Tsid, at the voxeli

D0
Tsid =

aref8

ai8
Dref −

1

ai8
sgref − gidDT −

1

ai8
lnSaref8 rref

ai8ri
D , s7d

whereDref is the reference dose for the voxel with refere
radiobiological parameterssrref,aref,grefd. In general,Dref

should be set to a value that yields a clinically sensible
at the reference voxel. For a given disease site, the rad
dose used in current clinical practice with “intent to cu
can be used as a good starting point in selecting the val
Dref. Using Eq. s7d, it is straightforward to determine t
desired target prescription dose once the radiobiologica
rametersr ,a ,gd metrics andDref are known. Note that th
desired dose distribution represents an ideal situation wi
considering the specific dosimetric tolerances of the sen
structures. In reality, this dose distribution may or may no
exactly realizable. Nevertheless, it sets a landmark
serves as the prescription dose in inverse planning to
the dose optimization process.

The fractional dose,di, is required to obtain the parame
ai8 in Eq. s7d. On the other hand,di is not known untilD0

Tsid
is known. We use a simple iterative method to solve
dilemma. First, the fractional dose is initially set todi

=Dref/Nf, Nf being the fractional number. Second,D0
Tsid is

calculated using Eq.s7d and di =D0
Tsid /Nf is updated. Th

newD0
Tsid is then obtained using the updateddi. We find tha

D0
Tsid converges to the solution in less than five iteration

this study we seta /b=10 Gy for all target voxels. The fo
malism proposed here is, however, general and can b
tended to deal with nonuniform distributions of thea /b

ratio.
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B. Inverse planning with spatially nonuniform dose
prescription

The next logical step after obtaining the calculated
scription dose is to use inverse planning to derive the op
beam profiles that will produce the prescribed dose dist
tion. To proceed, we construct an objective function to
the known biological information into account. In addition
the voxel-specific prescription as determined by Eq.s7d, the
nonlinear dose responses of tumor and normal structure
considered using the concept of equivalent volume42–48 of a
voxel, which is defined as

sDVeffdi = VifsidsDsid/Dtd1/n, s8d

wheresDVeffdi is the effective volume for voxeli with vol-
ume Vi and doseDsid, Dt is the desired dose for a targ
voxel or the TD5/5 of the corresponding organ, andfsid is the
functional unit density. The value ofn characterizes the dos
volume effect of an organ and reflects its architecturesserial
or paralleld of the sensitive structure. It is obtained by fitt
to clinical dose-volume data. For a sensitive structure,n is a
positive numbersn.0d while for a target,n should be as
signed with a small negative values−1,n,0d. fsid;1 for
a target voxel.

A general form of the inverse planning objective funct
in the voxel domain is written as

F = o
t=1

tt

rt

1

Nt
o
i=1

Nt

h1 + fDcsid/D0
Tsidg1/ntjfDcsid − D0

Tsidg2

+ o
s=1

ss

rs

1

Ns
o
i=1

Ns

h1 + fssidfDcsid/TDs,5/5g1/nsjDcsid2,

s9d

wherert andrs are the structure specific importance fac
of targett and sensitive structures, respectively,tt and ss

the number of targets and sensitive structures,Nt andNs the
total number of voxels of targett or sensitive structures, nt

andns the n parameter of targett and sensitive structures,
Dcsid the calculated dose in voxeli, D0

Tsid the prescription
dose in a target voxeli given by Eq.s7d, and TDs,5/5 the
TD5/5 of sensitive structures. The objective function be
comes the conventional quadratic objective function if
term in the bracket inside each summation is set to unitysthis
is true when the dose-volume effect is negligible, i.e., w
nt=ns= +`d. More detailed information about the optimiz
tion algorithm can be found in Ref. 49.

C. Implementation

A software module for optimizing the objective functi
s9d is implemented in the platform of thePLUNC treatmen
planning systemsUniversity of North Carolina, Chapel Hi
NCd. The dose calculation engine and a variety of ima
beam/plan display and evaluation tools ofPLUNC are used t
review and compare the optimization results. The ray-by
iterative algorithmsSIITPd reported earlier50,51 is employed
to obtain the optimal beam intensity profiles. The do

volume histogramssDVHsd of the involved organs are dis-
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re
played at the end of each iterative step to visually mo
the optimization process.

D. Plan review tools

It is desirable to extend the currently used plan rev
tools to deal with a biologically heterogeneous system. F
target, we define the effective dose at a voxel as the phy
dose normalized by the desired dose determined by Eqs7d.
The effective-dose volume histogramsEDVHd, which is ob-
tained by replacing the dose with the effective dose in
ventional DVH, is a useful tool for assessing BCRT pla
For a sensitive structure we replace the fractional volum
fiVi to construct a functional dose volume histog
sFDVHd, similar to that proposed by Luet al.52 and Markset
al.33 After including the heterogeneous biological inform
tion into the EDVH or FDVH, the wisdom used in interpr
ing a conventional DVH can be applied to assess the B
plans. In addition to the effective dose and the EDVH
FDVH, a cluster of DVHs, each corresponding to a given
of biological parametershr ,a ,gj, is also useful to asse
dosimetric behavior of the system as a function of the
logical status of the system.

Besides the dosimetric evaluation tools, we also use
TCP and NTCPs for plan evaluation. In calculating TCP
NTCP, the heterogeneous biology distributions need t
taken into account. TCP is calculated using Eqs.s2d and s3d
and NTCP is assessed using Lyman’s model. The Kutc
Burman effective-volume DVH reduction method44 is ex-
tended to include the nonuniform functional unit density
tribution using Eq.s8d when transforming a nonuniform do
distribution into a uniform irradiation of an effective par
volume. Model parameters from Burmanet al.53 are listed in
Table I for the NTCP calculation.

E. Case studies

A prostate case with two different hypothetical distri
tions of radiobiological parameters is used to test the
posed BCRT inverse planning scheme. In each study
target consists of the prostate gland with a few intrapros
lesions. The sensitive structures include the rectum, bla
and femoral heads. Figures 1sadand 3sad show the geometr
shapes and locations of the structures in the two exam

In the first example the target includes four biologic
different regions, and the functional unit density distributi
in the sensitive structures are uniform. Region 1 repre
the basis reference target volume with typical parameter54,55

r0i =53105 clonogen/cm3, ai =0.26 Gy−1, and gi
−1

TABLE I. Dose-volume parameters of various sensitive structures use
calculating NTCP in this study.

Sensitive structures n m D50/5 sGyd

Bladder 0.50 0.11 80
Rectum 0.12 0.15 80

Femoral head 0.25 0.12 65
=ln 2/40 day . The radiobiological parameters of the intra-
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prostatic lesions are listed in Table II. The parameterns

characterizing the dose-volume effect of the sensitive s
tures in the objective functions9d can be found in Table
The parameternt is chosen to be −0.2. For comparison,
IMRT plans, indexed by plan 1, -2, -3, -4, and -5, are ge
ated. Plan 1 is obtained using the BCRT optimization sch
described above withDref=70 Gy. Plan 2 is obtained by pr
scribing the whole target a uniform dose of 70 Gy. Pla
and -4 are similar to plan 2 except that the dose is esca
to 81 and 91 Gy,12,14 respectively. Plan 5 is the SIB IMR
plan with the same prescribed doses as that of the BCR
plan 1 to -4, the objective function expressed in Eq.s9d is
used and in plan 5 the conventional dose-based qua
objective function is adopted. The optimization parame
smaximum dose constraints and importance factorsd in the
dose-based method were adjusted by trial and error to o
the “optimal” plan. The same beam configurationsfive
equally spaced 15 MV photon beams with gantry angle
0°, 72°, 144°, 216°, and 288° in IEC conventiond is used in
generating the five plans.

In the second example we hypothetically introduce
higher functional unit density region in the rectumfRIregion
2 as shown in Fig. 3sadg in addition to three biologicall
different target regions. The functional unit density of
RIregion 1 is assigned a value of 1 and that of the RIregion
2 is set to be 4. The same setsr0i ,ai ,gid as the previou
example and a reference dose of 70 Gy are assigned
prostate gland. The parameters for other target region
listed in Table II. Once again, five IMRT plans are genera
Plan 1 is obtained using the proposed selective dose e
tion scheme, plan 2, -3, and -4 are generated using diff
uniform prescription dosess70, 81, and 91 Gyd and plan 5 is
SIB plan with the same prescription as plan 1 but is o
mized using the conventional quadratic objective function
generating these five plans, seven equally spaced 15
photon beamss0°, 51°, 103°, 154°, 206°, 257°, and 309°d are
employed.

III. RESULTS

A. Example 1: Prostate case with four biologically
different regions

In the first example, based on Eq.s7d and the paramete
listed in Table II, the prescription doses to the target regio
3, and 4 are determined to be 85, 119, and 75 Gy, re
tively. In order to examine the capability of the BCRT

TABLE II. Radiological parameters for the target regions in the two
amples.

Targets r0i sclonogen/cm3d ai sGy−1d gi sday−1d

Example 1 Region 2 53108 0.26 ln 2/40
Region 3 53105 0.13 ln 2/40
Region 4 53105 0.26 ln 2/10

Example 2 Region 2 53106 0.20 ln 2/10
Region 3 53103 0.10 ln 2/60
verse planning system in producing an extremely nonuni-
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form dose within a target volume, we have used
“extreme” combination ofhr ,a ,gj, which leads to an ex
ceedingly high prescription dose in region 3s119 Gyd. Fig-
ures 1sbd–1sdd show the isodose distributions of plan 1 i
transverse slice and two sagittal slices. The EDVH of
target and the DVHs of the sensitive structures are plott
Fig. 2 for plan 1 in solid curves. For comparison, the co
sponding EDVHs and DVHs of plan 2, -3, -4, and -5 are
shown in the figures as dashed, dotted, dash-dotted
dash-dot-dotted curves, respectively. As seen from Fig.
regions in the prostate are well covered by their prescrip
doses and the sensitive structures are well spared. Ev
this extreme case, it seems that the inverse planning s
can satisfy the biological requirement. A steep dose gra
is found at the interface between the target and the rectu
comparison of the target EDVH in Fig. 2sad indicates tha
above 98.5% of the target voxels achieved their de
doses in plan 1 and plan 5. However, for the uniform d
escalation scheme, the desired doses in some regionssregion
2, 3 and part of region 4 in plan 2; region 2 and 3 in pla
and region 3 in plan 4d are not achieved. We found that,
plan 1, the doses to the surrounding sensitive structure
not significantly increased compared with those of pla
despite the fact that some voxels in region 4 receive a do
high as 119 Gy. In plan 1, the rectum, bladder, and fem
heads are better spared in comparison with plan 3 an
However, by comparing the DVHs of plan 1 and -5, i
noticed that, although the target coverage in plan 5 is sim
to that in plan 1, the sensitive structures in plan 5 rec
much higher doses than plan 1, indicating that the prop
approach can improve the sensitive structure sparing
pared with the conventional dose-based quadratic obje
function. In addition, as can be expected, the target dos
plan 1 and -5 are less uniform in the target volume in c
parison with that of plan 2, -3, and -4. This is more p
nounced in the target region 1, where about 50% of the
ume receives a dose larger than 85 Gy as shown in Fig.sbd,
resulting in an effective dose above 120% in,50% of the
target voxelsfsee Fig. 2sadg. However, the increase of do
inhomogeneity is desirable here provided that the NTCP
not compromised.

Table III lists the calculated TCPs for the targets
NTCPs for the sensitive structures with consideration of
erogeneous biology in all plans. It is seen that the ov
TCPs for the three plans with uniform target dose pres
tions splan 2, -3, and -4d are all less than that of the BCR
plan splan 1d and SIB plansplan 5d. This is understandab
because, in plan 2, -3 and -4, some target regionsssuch as
target region 3d receive doses much less than the des
doses. For example, in plan 4, the TCP for target region
only 0.461. Even if the TCPs for region 1, 2, and 4 are
close to 1.00, the resultant total TCP for plan 4 is 0.461
contrast, the TCPs of plan 1 and plan 5 are 0.984 and 0
respectively. Furthermore, we found that the NTCPs o
sensitive structures in plan 1 are very close to plan 2, sig
cantly less than plan 3, -4, and -5. For example, the re

NTCPs are 0.21% for plan 1 and 0.20% for plan 2. These are
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increased to 0.65%, 1.84%, and 0.89% for Plan 3, -4, an
respectively. Again, although similar overall TCPs
achieved for the BCRT and dose-based SIB IMRT p
when the same dose prescriptions are used, the re
NTCPs are significantly reduced using the proposed
mulism. This is consistent with our previous study of
objective function in the context of conventional IMRT ai
ing to deliver a uniform dose to the target volume.49

B. Example 2: Prostate case with three biologically
different regions and nonuniform importance
in rectum

In the second hypothetical example, there are three
logically different regions in the prostate and two functi
ally different regions in the rectum. The prescription do
for the three target regions are 70sreference dosed, 99, and

121 Gy, as determined by Eq.s7d with the biological param-

Medical Physics, Vol. 32, No. 6, June 2005
,

m

-

eters listed in Table II. Figures 3sbd–3sfd show the isodos
distributions of plan 1 in three transverse slices and two
ittal slices. The EDVHs and DVHs of the target and sens
structures for plan 1 to plan 5 are plotted in Fig. 4 as s
dashed, dotted, dash-dotted, and dash-dot-dotted curve
spectively. Similar to the previous example, in plan 1,
regions in the prostate are well covered by a dose co
rable to the prescription and the sensitive structures are
spared. The dose gradient at the interface between the
and the rectum is very sharp for all the plans. From Fig.sad
we find that above 98% of the target voxels achieved
desired doses in plan 1. As a consequence of incorpor
functional unit density information in inverse planning,
rectum sparing is even better than that of plan 2, much b
than that of plan 3, -4. However, we notice that the sparin
the femoral heads in plan 1 is not as good as that in pl

FIG. 1. A hypothetical prostate ca
with four biologically different region
sexample 1d. sad Geometric shapes a
locations of the targets and sensit
structures; sbd–sdd: Isodose distribu
tions in an axial slice and two sagit
slices for plan 1, generated by op
mizing the objective function with
nonuniform dose prescription deriv
from Eq. s7d.
-3, and -4. This is because high-intensity beamlets that pass



dia

e in
sitiv

all
n the
P of
the

get
solid,
asl

1478 Y. Yang and L. Xing: IMRT dose escalation 1478
through the femoral heads are needed to adequately irra
the target region 3, as seen from Figs. 3sbd and 3scd. In
addition, similar to the first example, the target coverag
plan 5 is close to that in plan 1, but the doses to the sen

FIG. 2. Comparison of EDVHs and DVHs of the BCRT plansplan 1d, three
SIB plan splan 5d in example 1.sad Target EDVHs for the five planssinser
region 1, 2, 3 and 4 are 70, 85, 119, and 75 Gy, respectively;sbd-sed DVHs
dashed, dotted, dash-dotted, and dash-dot-dotted curves represent the
dose at a voxel normalized by its desired dose determined by Eq.s7d.
structures in plan 5 are much higher than that in plan 1.

Medical Physics, Vol. 32, No. 6, June 2005
te

e

Table IV lists the calculated TCPs and NTCPs for
plans. Once again, we found that the TCP of the target i
proposed BCRT technique is much higher and the NTC
the rectum is lower compared with those obtained using

orm IMRT planssplan 2: 70 Gy, plan 3: 81 Gy, and plan 4: 91 Gyd and the
he regular DVHs of the prostate targetd. The normalized doses to the tar
ifferent target regions and sensitive structures for the five plans. The
lts of plan 1, 2, 3, 4, and 5, respectively. The effective dose is definedthe physica
unif
t is t
of d
resu
conventional uniform dose escalation schemes. Remarkably,
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the overall TCP for the target is increased from 0.82
0.982 and the NTCP of the rectum is reduced from 3.1%
0.40% when plan 4 is replaced by the selective dose es
tion schemesplan 1d. Again, we found that, for similar ove
all TCPs, the rectum NTCPs of the BCRT plan are m
lower in comparison with that obtained using dose-ba
SIB scheme.

IV. DISCUSSION

Equations7d provides a general formula for determin
the desired target dose distribution based on the known
ogy information of the system, and represents one o
main results of this study. A few special cases are w
discussing here. First, when the biology distribution is
form in the target, a uniform dose ofDref is desired. This i
consistent with previous studies37 and existing clinica
knowledge.

When the clonogen densityr is nonuniform while the
values ofa andg are constant across the target, we hav

D0
Tsid = Dref −

1

a8
lnSr0ref

r0i
D , s10d

which is identical to the formula obtained by Webb a
Nahum.36 Equations10d indicates that the desired dose
pends on the tumor cell density logarithmically and is t
relatively insensitive to a variation in the clonogen den
For aref=0.312, for example, even if the clonogen densit
a tumor voxel is 10 times higher than that of the refere

TABLE III. Comparison of TCP and NTCP for the

Plan 1
sBCRT pland

Plan
s70 Gy U

TCP Region 1 0.997 0.9
Region 2 0.998 0.6
Region 3 0.989 0.0
Region 4 1.000 0.9
Overall 0.984 0.0

NTCP
s%d

Rectum 0.212 0.1
Bladder 1.6310−5 1.431

Femoral headsRd 2.0310−5 2.131
Femoral headsLd 1.2310−5 2.031

TABLE IV. Comparison of TCP and NTCP for the

Plan 1
sBCRT pland

Plan
s70 Gy U

TCP Region 1 0.997 0.9
Region 2 0.989 0.0
Region 3 0.996 0.0
Overall 0.981 0.0

NTCP
s%d

Rectum 0.397 0.4
Bladder 1.5310−5 1.231

Femoral headsRd 3.7310−5 1.531
Femoral headsLd 4.9310−5 1.131
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situation, the desired dose is only about 7 Gy higher tha
reference value. A detailed discussion of this special situ
has been presented by Webb and Nahum.36

Another special case is that the tumor clonogen de
and the proliferation rate are constant and the radiosens
a is spatially nonuniform. Equations7d now becomes

D0
Tsid =

aref8

ai8
Dref −

1

ai8
lnSaref8

ai8
D . s11d

The desired dose is approximately inversely proportion
the parameterai8 and is thus sensitively dependent on
value of parameterai8. This is similar to the conclusions
Ebert and Hoban40 and Levin-Plotnik and Hamilton.41 For
example, ifai8 is reduced from 0.312scorresponding toa
=0.26, fractional dosedi =2.0 Gy, anda /b ratio=10 Gyd to
0.18 scorresponding to a=0.15, di =2.0 Gy, and a /b
=10 Gyd, the desired dose is increased by about 70%sfrom
70 Gy to about 118 Gyd.

If we keep the tumor clonogen density and radiosens
ity a8 constant and only allow the proliferation rateg to vary
spatially, then

D0
Tsid = Dref +

1

ai8
sgi − grefdDT. s12d

Thus, the desired dose increases linearly with the proli
tion rate. In this work the potential cell-doubling times,Tp,
used by Kinget al.54 are adopted. SinceTp for a prostate
tumor is relatively longer, its influence on the desired do

IMRT plans for example 1.

d
Plan 3

s81 Gy Uniformd
Plan 4

s91 Gy Uniformd
Plan 5

sSIB pland

1.000 1.000 0.994
0.995 1.000 0.999
0.002 0.461 0.989
1.000 1.000 0.998
0.002 0.461 0.981

0.652 1.84 0.885
2.3310−5 4.2310−5 3.6310−5

2.6310−4 1.75310−4 3.9310−5

7.0310−4 5.26310−4 6.9310−5

IMRT plans for example 2.

d
Plan 3

s81 Gy Uniformd
Plan 4

s91 Gy Uniformd
Plan 5

sSIB Pland

1.000 1.000 0.968
0.587 0.981 0.987
0.408 0.839 0.990
0.239 0.823 0.946

1.46 3.12 1.25
1.8310−5 4.3310−5 3.9310−5

1.8310−5 5.3310−5 2.3310−5

3.0310−5 4.5310−5 3.6310−5
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not very significant. However, for other more rapidly pro
erating tumors, the proliferation rate may play an impor
role. In such situations, reducing the overall treatment
DT se.g., using an accelerated schemed is helpful to minimize
the influence of the proliferation rate.

We emphasize that the quadratic term in the lin
quadratic model plays an important role in accounting for
fractionation effect. If only the linear term is kept, the to
doseD0

Tsid in Eq. s7d is no longer entangled with the fra
tional dosedi. When the quadratic term is “switched on,”
value ofD0

Tsid depends not only on the total reference d
but also on the fractional dose. For a large fractional d
the total dose will be less, and vice versa. In other words

FIG. 3. A hypothetical prostate case with three biologically different reg
locations of the targets and sensitive structures;sbd–sdd Isodose distributio
the objective function with nonuniform dose prescription derived from
total dose received by a voxel is determined by two contrib-

Medical Physics, Vol. 32, No. 6, June 2005
,

uting factors, one being the local biological parame
hr ,a ,gj, and the other being the coupling between the f
tional dose and the total dose. The latter is responsible fo
phenomenon that the total dose needs to be decreased
the number of fractions is reduced. If the quadratic term w
ignored, according to Eq.s7d, the dose required at a vox
would be much higher. For example, the desired dose
target region 3 in example 1 are determined to be 119
135 Gy with and without inclusion of the quadratic te
respectively.

We also would like to emphasize that in this study,
radiosensitivitya8 and proliferation rateg are assumed to b
constants during the whole treatment course. In reality,

and nonuniform importance in the rectumsexample 2d. sad Geometric shapes a
three axial slices and two sagittal slices for plan 1, generated by opt
ions
ns in
Eq.s7d.
a8 andg may change with time due to such biological pro-
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cesses as tumor cell redistribution56 and reoxygenation.57

The time dependence of these factors may result in a re
tion of the desired prescription dose, and this effect sh

FIG. 4. Comparison of EDVHs, FDVHs, and DVHs of the BCRT plansplan
and the SIB plansplan 5d in example 2.sad The target EDVHs for the five
the target region 1, 2, and 3 are 70, 99, and 121 Gy, respectively;sbd The re
DVHs of different target regions and sensitive structures for the five p
results of plan 1, 2, 3, 4, and 5, respectively.
be investigated in the future.

Medical Physics, Vol. 32, No. 6, June 2005
-
Comparing with the uniform dose escalation scheme

study clearly suggests that deliberately incorporating a
homogeneous dose distribution significantly enhances

ree uniform IMRT planssplan 2: 70 Gy, plan 3: 81 Gy, and plan 4: 91 Gd
ssinsert is the regular DVHs of the prostate targetd. The normalized doses
FDVHs for the five planssinsert is the regular DVHs of the rectumd; scd–sed:

. The solid, dashed, dotted, dash-dotted, and dash-dot-dotted curvesresent the
1d, th
plan

ctum
lans
TCP and reduces the NTCP. Physically, we believe that the
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significant improvement arises from the more effective
of radiation in the newly proposed treatment scheme. A g
deal of dose is “wasted” in the conventional uniform d
escalation scheme. For example, in the first example th
creased doses in the target region 1 and 4 have almo
contributions to the enhancement of the TCP when pl
s70 Gy uniform dose to the prostate glandd is replaced b
plan 3 s81 Gyd or plan 4s91 Gyd. Even though part of th
prostate receives high doses in the selective dose esca
schemesfor example, 119 Gy in target region 3 of the fi
exampled, the total deposited energy in the targets is still
than that of plan 3 or -4. It is thus not difficult to understa
why deliberately nonuniform dose distributions can, in g
eral, reduce the radiation side effects and represent a
intelligent way to irradiate the tumor target.

A similar deficiency also exists in the current SIB
proach. Although it is clear that the regions with differ
tumor burdens should be given different doses, the sp
values for the regions are determined in anad hocmanner
The empirical boost dose could be too low, in which case
tumor control is sacrificed, or too high, in which case o
parts of the system are compromised. The problem is a
vated when the tumor burden varies continuously from p
to point. In the proposed BCRT approach, the prescr
dose is voxel dependent and is determined based on t
mor biology distribution. In addition, a more sophistica
objective function is developed to take the dose-volume
fect and functional density information of the sensitive st
tures into account, resulting in better sparing of the sens
structures.

Finally, it should be recognized that our knowledge
radiobiological parameters for tumors or normal tissue
still very crude and the validity of the model is still und
establishment. Therefore, the LQ model and the param
adopted in the paper are fine for a proof of principle but
should not be taken as more than that.

V. CONCLUSION

In the presence of nonuniform biology distributio
IMRT inverse planning is complicated by the fact that i
not clear what represents the appropriate spatial dose
scription, which is generally used as a landmark to guide
dose optimization process. In this work, we have describ
technique for deriving the prescription dose based on an
model with consideration of the cell proliferation. The re
tion is quite general and can be used as prescription do
guide an arbitrary inverse planning objective function aim
to produce customized dose distribution in accordance
the spatial biology information. For a given patient, IM
inverse planning now consists of two steps: Derivation o
prescription dose, and beam profile optimization that
duces as closely as possible this prescription dose. Th
malism proposed here lays a technical foundation for fu
BCRT development, allowing us to escalate tumor dose m
intelligently and effectively. When combined with state-

the-art biological imaging techniques, which promise to re-

Medical Physics, Vol. 32, No. 6, June 2005
t

-
o

n

re

c

-

u-

s

-

a

to

r-

e

veal detailed patient-specific biology distribution inform
tion, this study may have significant implication for
management of cancer in the future.
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APPENDIX: DERIVATION OF EQUATION „7…

We present the detailed derivation process for Eq.s7d un-
der the condition of equal mass and volume for all ta
voxels.

Substituting Eq.s5d into Eq. s6d, we obtain

lTCPi
]smiDid
]TCPi

= lTCPref
]smrefDrefd

]TCPref
= − TCP. sA1d

SincelÞ0 otherwise, TCP becomes zero according to
requirement of Eq.s6d, which corresponds to a minimum.
we assumed that mass for all target voxels is equal, the
sA1d becomes

TCPi
]Di

]TCPi
= TCPref

]Dref

]TCPref
. sA2d

From Eq.s2d we have

Di =
− 1

ai8
lnH− giDT + lnF − 1

riVi
ln TCPiGJ . sA3d

Substituting the expressions from Eq.sA3d for both Di and
Dref into Eq. sA2d, we have

ai8 lnsTCPid = aref8 lnsTCPrefd. sA4d

The desired doses,D0
Tsid, producing maximum TCP with th

constraint of constant integral dose, can be obtained by
stituting TCPi and TCPref expressed in Eq.s2d into Eq. sA4d

D0
Tsid =

aref8

ai8
Dref −

1

ai8
sgref − gidDT −

1

ai8
lnSaref8 rrefVref

ai8riVi
D .

sA5d

When volume for all target voxels is equal, Eq.sA5d be-
comes Eq.s7d.

adAuthor to whom correspondence should be addressed. Electronic
lei@reyes.stanford.edu

1S. Webb,Intensity-Modulated Radiation TherapysInstitute of Physics
Bristol, 2001d, Vol. XV.

2C. C. Ling, C. Burman, C. S. Chui, G. J. Kutcher, S. A. Leibel
LoSasso, R. Mohan, T. Bortfeld, L. Reinstein, S. Spirou, X. H. Wang
Wu, M. Zelefsky, and Z. Fuks, “Conformal radiation treatment of pros
cancer using inversely-planned intensity-modulated photon beam
duced with dynamic multileaf collimation,” Int. J. Radiat. Oncol., Bi
Phys. 35, 721–730s1996d.

3
S. Y. Woo, W. H. Grant 3rd, D. Bellezza, R. Grossman, P. Gildenberg, L.



sity
tereo
intra-

, P.
rapy
CSF

rapy

, L.
rant
rapy
xic-

oore
dio-
ch-
iol.,

ada,
dio-
col.,

. E.
chil-
rbit,”

ca-
ation

ncer

H.
odu-
mical

D.
ution

d J.

ol.,

ion
iol.,

D.
sity-

, “A
uided
hys.

dio-
adiat

logi-

ion
t uni

ges

ron,
g ap
aging

Imag-

M. J.
ance

can-

h

tay-
ang-
n

, M.
an

.

ted
sing
diat.

D.

f, G.
ela-
ent dif-
,” J.

S.
the

M.
d K.
nse,”

cer,
lume

poth-
adio-

ated

trol
istri-

orm
target

n of

l ap-
s tu-

ntrol

trol
treat-

rapy:

I. A
histo-

ility
ume

1483 Y. Yang and L. Xing: IMRT dose escalation 1483
S. Carpentar, M. Carol, and E. B. Butler, “A comparison of inten
modulated conformal therapy with a conventional external beam s
tactic radiosurgery system for the treatment of single and multiple
cranial lesions,” Int. J. Radiat. Oncol., Biol., Phys.35, 593–597s1996d.

4N. Lee, P. Xia, J. M. Quivey, K. Sultanem, I. Poon, C. Akazawa
Akazawa, V. Weinberg, and K. K. Fu, “Intensity-modulated radiothe
in the treatment of nasopharyngeal carcinoma: An update of the U
experience,” Int. J. Radiat. Oncol., Biol., Phys.53, 12–22s2002d.

5Q. T. Le, L. Xing, and A. L. Boyer, “Head and Neck IMRT,” in3D
Conformal Radiation Therapy & Intensity Modulated Radiation The
in the Next Millennium, edited by J. G. Purdy and J. PaltasMedical
Physics Publishing, Madison, WI, 1999d, pp. 190–195.

6E. Huang, B. S. Teh, D. R. Strother, Q. G. Davis, J. K. Chiu, H. H. Lu
S. Carpenter, W. Y. Mai, M. M. Chintagumpala, M. South, W. H. G
3rd, E. B. Butler, and S. Y. Woo, “Intensity-modulated radiation the
for pediatric medulloblastoma: Early report on the reduction of ototo
ity,” Int. J. Radiat. Oncol., Biol., Phys.52, 599–605s2002d.

7J. G. Rosenman, J. S. Halle, M. A. Socinski, K. Deschesne, D. T. M
H. Johnson, R. Fraser, and D. E. Morris, “High-dose conformal ra
therapy for treatment of stage IIIA/IIIB non-small-cell lung cancer: Te
nical issues and results of a phase I/II trial,” Int. J. Radiat. Oncol., B
Phys. 54, 348–356s2002d.

8A. J. Mundt, A. E. Lujan, J. Rotmensch, S. E. Waggoner, S. D. Yam
G. Fleming, and J. C. Roeske, “Intensity-modulated whole pelvic ra
therapy in women with gynecologic malignancies,” Int. J. Radiat. On
Biol., Phys. 52, 1330–1337s2002d.

9M. J. Krasin, B. T. Crawford, Y. Zhu, E. S. Evans, M. R. Sontag, L
Kun, and T. E. Merchant, “Intensity-modulated radiation therapy for
dren with intraocular retinoblastoma: Potential sparing of the bony o
Clin. Oncol. sR Coll. Radiold 16, 215–222s2004d.

10J. Meyer, M. H. Phillips, P. S. Cho, I. Kalet, and J. N. Doctor, “Appli
tion of influence diagrams to prostate intensity-modulated radi
therapy plan selection,” Phys. Med. Biol.49, 1637–1653s2004d.

11A. Eisbruch, “Intensity-modulated radiotherapy of head-and-neck ca
Encouraging early results,” Int. J. Radiat. Oncol., Biol., Phys.53, 1–3
s2002d.

12M. J. Zelefsky, Z. Fuks, M. Hunt, Y. Yamada, C. Marion, C. C. Ling,
Amols, E. S. Venkatraman, and S. A. Leibel, “High-dose intensity m
lated radiation therapy for prostate cancer: Early toxicity and bioche
outcome in 772 patients,” Int. J. Radiat. Oncol., Biol., Phys.53, 1111–
1116 s2002d.

13S. M. Zhou, L. B. Marks, G. S. Tracton, G. S. Sibley, K. L. Light, P.
Maguire, and M. S. Anscher, “A new three-dimensional dose distrib
reduction scheme for tubular organs,” Med. Phys.27, 1727–1731s2000d.

14C. C. Ling, J. Humm, S. Larson, H. Amols, Z. Fuks, S. Leibel, an
Koutcher, “Towards multidimensional radiotherapysMD-CRTd: Biologi-
cal imaging and biological conformality,” Int. J. Radiat. Oncol., Bi
Phys. 47, 551–560s2000d.

15A. Brahme, “Individualizing cancer treatment: Biological optimizat
models in treatment planning and delivery,” Int. J. Radiat. Oncol., B
Phys. 49, 327–337s2001d.

16L. Xing, C. Cotrutz, S. Hunjan, A. L. Boyer, E. Adalsteinsson, and
Spielman, “Inverse planning for functional image-guided inten
modulated radiation therapy,” Phys. Med. Biol.47, 3567–3578s2002d.

17K. S. Chao, S. Mutic, R. L. Gerber, C. A. Perez, and J. A. Purdy
novel approach to overcome hypoxic tumor resistance: Cu-ATSM-g
intensity-modulated radiation therapy,” Int. J. Radiat. Oncol., Biol., P
49, 1171–1182s2001d.

18R. Macklis, M. Weinhous, and G. Harnisch, “Intensity-modulated ra
therapy: Rethinking basic treatment planning paradigms,” Int. J. R
Oncol., Biol., Phys.48, 317–318s2000d.

19M. Alber, F. Paulsen, S. M. Eschmann, and H. J. Machulla, “On bio
cally conformal boost dose optimization,” Phys. Med. Biol.48, N31–35
s2003d.

20Q. Wu, R. Mohan, A. Niemierko, and R. Schmidt-Ullrich, “Optimizat
of intensity-modulated radiotherapy plans based on the equivalen
form dose,” Int. J. Radiat. Oncol., Biol., Phys.52, 224–235s2002d.

21S. R. Cherry, “In vivo molecular and genomic imaging: New challen
for imaging physics,” Phys. Med. Biol.49, R13–48s2004d.

22J. Kurhanewicz, M. G. Swanson, S. J. Nelson, and D. B. Vigne
“Combined magnetic resonance imaging and spectroscopic imagin
proach to molecular imaging of prostate cancer,” J. Magn. Reson Im

16, 451–463s2002d.

Medical Physics, Vol. 32, No. 6, June 2005
-

,

:

.

-

-

23C. H. Contag and B. D. Ross, “It’s not just about anatomy:In vivo biolu-
minescence imaging as an eyepiece into biology,” J. Magn. Reson
ing 16, 378–387s2002d.

24S. J. DiBiase, K. Hosseinzadeh, R. P. Gullapalli, S. C. Jacobs,
Naslund, G. N. Sklar, R. B. Alexander, and C. Yu, “Magnetic reson
spectroscopic imaging-guided brachytherapy for localized prostate
cer,” Int. J. Radiat. Oncol., Biol., Phys.52, 429–438s2002d.

25J. G. Tjuvajevet al., “Imaging of brain tumor proliferative activity wit
iodine-131-iododeoxyuridine,” J. Nucl. Med.35, 1407–1417s1994d.

26A. F. Shields, J. R. Grierson, B. M. Dohmen, H. J. Machulla, J. C. S
anoff, J. M. Lawhorn-Crews, J. E. Obradovich, O. Muzik, and T. J. M
ner, “Imaging proliferationin vivo with fF-18g FLT and positron emissio
tomography,” Nat. Med.4, 1334–1336s1998d.

27J. S. Rasey, W. J. Koh, M. L. Evans, L. M. Peterson, T. K. Lewellen
M. Graham, and K. A. Krohn, “Quantifying regional hypoxia in hum
tumors with positron emission tomography off18Fgfluoromisonidazole: A
pretherapy study of 37 patients,” Int. J. Radiat. Oncol., Biol., Phys36,
417–428s1996d.

28W. J. Koh et al., “Evaluation of oxygenation status during fractiona
radiotherapy in human nonsmall cell lung cancers u
fF-18gfluoromisonidazole positron emission tomography,” Int. J. Ra
Oncol., Biol., Phys.33, 391–398s1995d.

29B. L. Miller, L. Chang, R. Booth, T. Ernst, M. Cornford, D. Nikas,
McBride, and D. J. Jenden, “In vivo 1H MRS choline: Correlation within
vitro chemistry/histology,” Life Sci.58, 1929–1935s1996d.

30R. K. Gupta, T. F. Cloughesy, U. Sinha, J. Garakian, J. Lazaref
Rubino, L. Rubino, D. P. Becker, H. V. Vinters, and J. R. Alger, “R
tionships between holine magnetic resonance spectroscopy, appar
fusion coefficient and quantitative histopathology in human glioma
Neuro-Oncol.50, 215–226s2000d.

31R. J. Hamilton, M. J. Blend, C. A. Pelizzari, B. D. Milliken, and
Vijayakumar, “Using vascular structure for CT-SPECT registration in
pelvis,” J. Nucl. Med.40, 347–351s1999d.

32A. F. Shields, D. A. Mankoff, J. M. Link, M. M. Graham, J. F. Eary, S.
Kozawa, M. Zheng, B. Lewellen, T. K. Lewellen, J. R. Grierson, an
A. Krohn, “Carbon-11-thymidine and FDG to measure therapy respo
J. Nucl. Med. 39, 1757–1762s1998d.

33L. B. Marks, G. W. Sherouse, M. T. Munley, G. C. Bentel, D. P. Spen
and C. Scarfone, “Incorporation of functional status into dose-vo
analysis,” Med. Phys.26, 196–199s1999d.

34T. E. Schultheiss, G. K. Zagars, and L. J. Peters, “An explanatory hy
esis for early- and late-effect parameter values in the LQ model,” R
ther. Oncol. 9, 241–248s1987d.

35J. F. Fowler, “The linear-quadratic formula and progress in fraction
radiotherapy,” Br. J. Radiol.62, 679–694s1989d.

36S. Webb and A. E. Nahum, “A model for calculating tumour con
probability in radiotherapy including the effects of inhomogeneous d
butions of dose and clonogenic cell density,” Phys. Med. Biol.38, 653–
666 s1993d.

37S. Webb, P. M. Evans, W. Swindell, and D. J. O., “A proof that unif
dose gives the greatest TCP for fixed integral dose in the planning
volume,” Phys. Med. Biol.39, 2091–2098s1994d.

38A. Brahme and A. K. Agren, “Optimal dose distribution for eradicatio
heterogeneous tumours,” Acta Oncol.26, 377–385s1987d.

39N. A. Stavreva, P. V. Stavrev, and W. H. Round, “A mathematica
proach to optimizing the radiation dose distribution in heterogeneou
mours,” Acta Oncol.35, 727–732s1996d.

40M. A. Ebert and P. W. Hoban, “Some characteristics of tumour co
probability for heterogeneous tumours,” Phys. Med. Biol.41, 2125–2133
s1996d.

41D. Levin-Plotnik and R. J. Hamilton, “Optimization of tumour con
probability for heterogeneous tumours in fractionated radiotherapy
ment protocols,” Phys. Med. Biol.49, 407–424s2004d.

42T. E. Schultheiss, C. G. Orton, and R. A. Peck, “Models in radiothe
Volume effects,” Med. Phys.10, 410–415s1983d.

43J. T. Lyman and A. B. Wolbarst, “Optimization of radiation therapy. II
method of assessing complication probabilities from dose-volume
grams,” Int. J. Radiat. Oncol., Biol., Phys.13, 103–109s1987d.

44G. J. Kutcher and C. Burman, “Calculation of complication probab
factors for non-uniform normal tissue irradiation: The effective vol

method,” Int. J. Radiat. Oncol., Biol., Phys.16, 1623–1630s1989d.



r, S.
nt

ased
iol.,

. T.
ce o

cally

lan-

ent

A.
reat-

Biol.

mal
Biol.,

for
, and
iol.,

hap-
ocal
a ra-

ur-
after
diat.

tion
nse,”

1484 Y. Yang and L. Xing: IMRT dose escalation 1484
45R. Mohan, G. S. Mageras, B. Baldwin, L. J. Brewster, G. J. Kutche
Leibel, C. M. Burman, C. C. Ling, and Z. Fuks, “Clinically releva
optimization of 3-D conformal treatments,” Med. Phys.19, 933–944
s1992d.

46J. O. Deasy, K. S. Chao, and J. Markman, “Uncertainties in model-b
outcome predictions for treatment planning,” Int. J. Radiat. Oncol., B
Phys. 51, 1389–1399s2001d.

47M. K. Martel, W. M. Sahijdak, R. K. Ten Haken, M. L. Kessler, and A
Turrisi, “Fraction size and dose parameters related to the inciden
pericardial effusions,” Int. J. Radiat. Oncol., Biol., Phys.40, 155–161
s1998d.

48L. Jones and P. Hoban, “A comparison of physically and radiobiologi
based optimization for IMRT,” Med. Phys.29, 1447–1455s2002d.

49Y. Yang and L. Xing, “Clinical knowledge-based inverse treatment p
ning,” Phys. Med. Biol.49, 5101–5117s2004d.

50L. Xing and G. T. Y. Chen, “Iterative algorithms for inverse treatm
planning,” Phys. Med. Biol.41, 2107–2123s1996d.

51L. Xing, R. J. Hamilton, D. Spelbring, C. A. Pelizzari, G. T. Chen, and
L. Boyer, “Fast iterative algorithms for three-dimensional inverse t
ment planning,” Med. Phys.25, 1845–1849s1998d.

52
Y. Lu, D. R. Spelbring, and G. T. Chen, “Functional dose-volume histo-

Medical Physics, Vol. 32, No. 6, June 2005
f

grams for functionally heterogeneous normal organs,” Phys. Med.
42, 345–356s1997d.

53C. Burman, G. J. Kutcher, B. Emami, and M. Goitein, “Fitting of nor
tissue tolerance data to an analytic function,” Int. J. Radiat. Oncol.,
Phys. 21, 123–135s1991d.

54C. R. King, T. A. DiPetrillo, and D. E. Wazer, “Optimal radiotherapy
prostate cancer: Predictions for conventional external beam, IMRT
brachytherapy from radiobiologic models,” Int. J. Radiat. Oncol., B
Phys. 46, 165–172s2000d.

55A. E. Nahum, B. Movsas, E. M. Horwitz, C. C. Stobbe, and J. D. C
man, “Incorporating clinical measurements of hypoxia into tumor l
control modeling of prostate cancer: Implications for the alpha/bet
tio,” Int. J. Radiat. Oncol., Biol., Phys.57, 391–401s2003d.

56S. L. Scott, P. H. Gumerlock, L. Beckett, Y. Li, and Z. Goldberg, “S
vival and cell cycle kinetics of human prostate cancer cell lines
single- and multifraction exposures to ionizing radiation,” Int. J. Ra
Oncol., Biol., Phys.59, 219–227s2004d.

57R. F. Kallman and M. J. Dorie, “Tumor oxygenation and reoxygena
during radiation therapy: Their importance in predicting tumor respo

Int. J. Radiat. Oncol., Biol., Phys.12, 681–685s1986d.



P

o
b
(

P
D

Int. J. Radiation Oncology Biol. Phys., Vol. 62, No. 2, pp. 595–605, 2005
Copyright © 2005 Elsevier Inc.

Printed in the USA. All rights reserved
0360-3016/05/$–see front matter
doi:10.1016/j.ijrobp.2005.02.001

HYSICS CONTRIBUTION

NARROW BAND DEFORMABLE REGISTRATION OF PROSTATE MAGNETIC
RESONANCE IMAGING, MAGNETIC RESONANCE SPECTROSCOPIC

IMAGING, AND COMPUTED TOMOGRAPHY STUDIES

EDUARD SCHREIBMANN, PH.D., AND LEI XING, PH.D.

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA

Purpose: Endorectal (ER) coil–based magnetic resonance imaging (MRI) and magnetic resonance spectroscopic
imaging (MRSI) is often used to obtain anatomic and metabolic images of the prostate and to accurately identify
and assess the intraprostatic lesions. Recent advancements in high-field (3 Tesla or above) MR techniques affords
significantly enhanced signal-to-noise ratio and makes it possible to obtain high-quality MRI data. In reality, the
use of rigid or inflatable endorectal probes deforms the shape of the prostate gland, and the images so obtained
are not directly usable in radiation therapy planning. The purpose of this work is to apply a narrow band
deformable registration model to faithfully map the acquired information from the ER-based MRI/MRSI onto
treatment planning computed tomography (CT) images.
Methods and Materials: A narrow band registration, which is a hybrid method combining the advantages of
pixel-based and distance-based registration techniques, was used to directly register ER-based MRI/MRSI with
CT. The normalized correlation between the two input images for registration was used as the metric, and the
calculation was restricted to those points contained in the narrow bands around the user-delineated structures.
The narrow band method is inherently efficient because of the use of a priori information of the meaningful
contour data. The registration was performed in two steps. First, the two input images were grossly aligned using
a rigid registration. The detailed mapping was then modeled by free form deformations based on B-spline. The
limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS), which is known for its superior
performance in dealing with high-dimensionality problems, was implemented to optimize the metric function.
The convergence behavior of the algorithm was studied by self-registering an MR image with 100 randomly
initiated relative positions. To evaluate the performance of the algorithm, an MR image was intentionally
distorted, and an attempt was then made to register the distorted image with the original one. The ability of the
algorithm to recover the original image was assessed using a checkerboard graph. The mapping of ER-based
MRI onto treatment planning CT images was carried out for two clinical cases, and the performance of the
registration was evaluated.
Results: A narrow band deformable image registration algorithm has been implemented for direct registration
of ER-based prostate MRI/MRSI and CT studies. The convergence of the algorithm was confirmed by starting
the registration experiment from more than 100 different initial conditions. It was shown that the technique can
restore an MR image from intentionally introduced deformations with an accuracy of approximately 2 mm.
Application of the technique to two clinical prostate MRI/CT registrations indicated that it is capable of
producing clinically sensible mapping. The whole registration procedure for a complete three-dimensional study
(containing 256 � 256 � 64 voxels) took less than 15 min on a standard personal computer, and the convergence
was usually achieved in fewer than 100 iterations.
Conclusions: A deformable image registration procedure suitable for mapping ER-based MRI data onto
planning CT images was presented. Both hypothetical tests and patient studies have indicated that the registra-
tion is reliable and provides a valuable tool to integrate the ER-based MRI/MRSI information to guide prostate
radiation therapy treatment. © 2005 Elsevier Inc.
Narrow band registration model, Endorectal coil, Prostate imaging, Treatment planning.
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INTRODUCTION

ndorectal (ER) coil-based magnetic resonance imaging
MRI) and magnetic resonance spectroscopic imaging
MRSI) provide high-resolution anatomic and metabolic
nformation and allow us to better assess the extent of
rostate cancer and the involvement of seminal vesicles
1–12). The new imaging information can also be used to
uide the dose optimization process to selectively boost the
igh tumor burden regions (13–16). To use the imaging data
or treatment planning, an indispensable step is the regis-
ration of ER-based MRI/MRSI and the treatment planning
T images. Presently, manual and/or automated image fu-

ion tools implemented in most commercial treatment plan-
ing systems are based on geometric translations and rota-
ions of the images and are generally not suitable for
andling the problem because the endorectal coil displaces
nd distorts the prostate and surrounding tissue (17). A
eformable registration procedure must be applied to map
he ER-based MRI/MRSI data onto the planning CT images
cquired in a normal treatment position without the inser-
ion of ER probe (18, 19).

There have been several relevant image registration tech-
iques reported in the literature. Zaider et al. (13) and Court
nd Dong (20) used a rigid transformation for the correction
f tissue displacement. A deformable procedure based on
he finite element model (FEM), in which images are de-
cribed as blocks of elastic materials on which forces apply,
as proposed by Bharath et al. (21). In this approach, the
arameters that control the behavior of the elastic material
nd are responsible for the conversion of forces into local
eformations of the elastic material are Young’s elastic
odulus and Poisson’s ratio. Although powerful, the model

as the drawback that values of the elasticity and density
onstant for various tissues are not readily available and
ave to be found by a trial and error procedure. The method
lso relies on using complicated software to generate a FEM
esh and masks of the involved structures. Recently, a

impler technique based on spline interpolation was pro-
osed (18). When the first and second derivatives of the cost
unction can be analytically deduced, this approach reduces
he problem to solving a set of system equations (22). Wu et
l. (23) used a free-form intramodality registration between
he MRI images obtained with and without inflatable ER
robe acquired at the end of the study. Their study sug-
ested that the free-form registration is stable and accurate
or dealing with the problem. However, the approach is
alid only for intramodality registration and entails extra
RI scans of the pelvic region with body coil. In addition,
term was introduced in their cost function to constrain the
ptimization to smooth deformations, posing a new problem
f how to objectively select the relative weightings of
ifferent terms in the cost function.
An improvement to this method can be achieved by using

spline model with the smoothness of the deformation field
ssured by the interpolation between a grid of fixed control

oints. In this setup, the cost function is composed of a t
ingle term and no weighting factors are required. A simple
ethod along this line is to deduce the spline coefficients

rom a set of user-defined control points, as was done by Fei
t al. (18) in a study of warping and rigid registration of MR
olumes. This method was also applied to directly register
rostate CT and MRI/MRSI and validated by using a series
f phantom measurements (24, 25). Coselmon et al. (26)
sed a similar technique to study the accuracy of mutual-
nformation–based CT registration of the lung at exhale and
nhale respiratory states.

In general, image registration can be formulated as an
ptimization problem where the variables are a group of
ransformation parameters that lead to the best match be-
ween the input images. The match is quantified in mathe-
atical terms by the use of a metric, which ranks a potential
atching based on the image histograms, resolution, or

ixel values of the involved organs. There is a vast literature
n using image intensity information such as mean squares,
ormalized correlation, and mutual information (27) to con-
truct metrics for guiding the registration process. The mu-
ual information represents a popular choice when dealing
ith multimodality image registration. Briefly, mutual in-

ormation is a criterion from information theory and is
elated to entropy, which is a measure of uncertainty, vari-
bility, and complexity. When each of the two images
rovides the most information about the other, the mutual
nformation metric is maximal and the two images are
onsidered to be coregistered. Methods using signed dis-
ance information from edge features have also been re-
orted (28), in which the signed distance field of an object
urface is used as the shape representation. The signed
istance field is a continuous scalar function defined
hroughout the volume, and its value is simply the distance
o the nearest point on the primary surface, with opposite
igns on opposite sides of the surface. The central idea is
hat if the data shapes are registered correctly, the signed
istance fields should match in the common coordinate
ystem.

To register the prostate MRI/MRSI with CT images,
heoretically, all we need to do is to use an optimization
lgorithm to minimize an mutual information metric or
like. Such setups have been applied before on the problem
f CT–positron emission tomography (PET) registration
29), with splines modeling the deformations and a limited
emory quasi-Newton (L-BFGS) algorithm (30) optimizing

he system. In reality, the mutual information metric is
oisy, and a deterministic optimization algorithm is gener-
lly not suitable to find the global solution. More powerful
lgorithms capable of statistically escaping from local min-
ma, such as simulated annealing or genetic algorithms, are
ften used to attack the problem. Even with these powerful
tochastic algorithms, finding the true solution of the prob-
em can still be challenging because of the wide variety of
ossible pixel intensities within an organ. A narrow band
ormalism was devised to improve the convergence the
alculation. A narrow band is composed of all points within

wo isosurfaces defined by the signed distance values



o
i
m
r
d
o
b
s
s
i
n
a
t
p
c

i
C
I
m
t
s
r
i
m
f

S

t
t
s
I
d
d
t
m
s
m

R

a

F
s
l
r

F
r
(c) the narrow band representation of rectum and prostate.
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f �d. The method is a hybrid of the techniques based on
mage intensity distributions and the signed distance infor-
ation (28). In essence, the technique is a two-step image

egistration (31) in which an organ is first represented by a
ata structure containing the signed distance values from
bjects, followed by an image registration using a pixel-
ased metric. A signed distance field of an object is repre-
ented through the narrow band, since the concept prevents
elf-intersection problems and seamlessly handles changes
n topology. Previous studies have suggested that the tech-
ique improves the convergence behavior of the calculation
nd reduces the computational efforts (31), because sophis-
icated statistical considerations can be replaced with sim-
ler pixel-based metrics computed only in the regions of
linical interest.

In this work we apply the narrow band deformable reg-
stration model to map the ER-based MRI/MRSI data onto
T images and report our implementation of the algorithm.

n particular, we present our experience with the selection of
odel parameters, optimization algorithm, and the valida-

ion of the technique. The general reference drawn from this
tudy is that the narrow band technique is robust and accu-
ate for mapping information between different types of
mages. The approach is quite general and, with minor
odifications, it should be applicable to many other de-

ormable image registration problems in radiation therapy.

METHODS AND MATERIALS

oftware platform
All calculations are implemented using an open-source software

oolkit named the Insight Toolkit (ITK) (32), which consists of
emplate-based codes for a large number of image visualization,
egmentation, and registration classes. The programs contained in
TK are easily extendable, making it an ideal platform for the
evelopment of image registration methods. Concise and clear
escriptions on the use of the available subroutines are provided in
he ITK manual. For convenience, in the following we outline the
ethods used in our calculation with attention paid to the issues

pecific to radiation therapy image registration and to the imple-
entation of the methods.

egistration framework
The overall image registration process of ER-based MRI/MRSI

nd treatment planning CT images is shown in Fig. 1. The input to

ig. 1. Narrow band-based image registration procedure. A two-
tep registration is employed here to successively deal with trans-
ational and deformation miss-matches. (CT � computed tomog-

aphy; MRI � magnetic resonance imaging.)
ig. 2. (a) Magnetic resonance image zoomed in the prostate
egion, (b) computed tomography image of the pelvic region, and
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Fig. 3. Checkerboard visualization of algorithm’s capability to recover from intentionally introduced deformations for

two cases. The test is to register the warped image to the “gold standard” represented by the original form of the
deformed magnetic resonance image. For the first case, the original and intentionally deformed images are shown in (a)
and (b), respectively. The checkerboard images before and after deformable registration are shown in (c) and (d),
respectively. The registration process and the results for the second case are shown in (e) to (h). Figure continues on p. 599.
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he registration software is the images to be registered: a fixed
mage and a floating image, described by their intensity distribu-
ions Ia(x) and Ib(x), respectively. In our problem, the former one
s assigned to be the treatment planning CT image and the later the
R-based MRI/MRSI. To facilitate the computational process, we
eparated the image registration calculation into two steps. A rigid
egistration is first performed to grossly align the two images and
he deformable registration then follows.

For convenience, a patient is divided into a grid with N3 cells.
he corner of a lattice cell is referred to as a node and is indexed
y i (i � 1, 2, . . . N3). The displacement of a node i is specified by
vector xi, and the displacement vectors, {xi}, of a collection of

odes characterize the tissue deformation. The displacement at a
ocation x on the image is deduced by fitting a polynomial ex-
ressed using the basis spline (BSpline) (33, 34) to the grid nodes

Fig. 3. (Continued)
i. Unlike other spline models, the BSplines are locally controlled. t
hat is, the displacement of an interpolation point is influenced
nly by that of the closest grid points, and changing a lattice node
nly affects the transformation regionally, making it efficient in
escribing local deformations.
A signed narrow band is defined on the CT image for prostate

nd rectum based on the physician-delineated contour. A narrow
and is composed of a number of nodes with known distances to
he contours, which introduces additional positional information in
he representation. Typical narrow bands for rectum and prostate
re shown in Fig. 2c as a gray-level image. Pixel intensities
orrespond to the signed distances with dark/white values repre-
enting the negative/positive distances. The zero level set is rep-
esented with a medium gray intensity. The gray background in
his image is not part of the narrow band structure.

The task of standard image registration is to find the transfor-
ation matrix, T(x), that maps an arbitrary point x on the fixed

mage to the corresponding point x=on the floating image (or vice
ersa) so that the best possible match, as measured by the regis-
ration metric, is achieved. The choice of the metric for ranking
ifferent possible matching differentiates one algorithm from the
thers and is fundamental to the success of the image registration.
n our calculation, each organ in the floating image is represented
y the data structure of the signed distance or by the narrow band
urrounding the edge of the organ. The narrow band acts as a shape
epresentation model of an anatomic structure. It is the fixed or
arget object in the registration process so that the band does not
eed to be regenerated for each evaluation of the metric (31). As
hown in Fig. 1, the image registration proceeds in an iterative
ashion. The matrix coefficients of T(x) are the node displacements
nd are adjusted iteratively to minimize the normalized correlation
etween the two images defined as:

f �
�
i�1

Ia(xi)Ib(Txi)

��
i�1

Ia
2(xi)�

j�1
Ib

2(Tx j)
(1)

here i and j are the node indices within the narrow band on the
xed image, Ia(xi) is the intensity of the node at xi on the fixed

mage a, and Ib(Txi) is the intensity of the image b at where the
ode xi is mapped. The metric uses both voxel intensity and
elineated structures as complementary information for the regis-
ration.

he L-BFGS algorithm for optimization
Optimization of the normalized correlation function with respect

o the displacements of the nodes, {xi}, yields the transformation
oefficients T(x) that map the points on image a to image b. Since
he two images do not necessarily have the same size, an interpo-
ation may be needed to compute intensity at a mapped point x �
(x)x. To facilitate the optimization it is preferable that both the
eformable model and the metric are differentiable (29). This
ondition is satisfied for the system that we are dealing with, as
emonstrated in a previous mathematical work (35).
We used the limited memory BFGS algorithm L-BFGS (30),

hich is known for its superior performance in dealing with
igh-dimensionality problems, to optimize the system here. L-
FGS, as compared with a conventional gradient search method
uch as the Newton’s algorithm, does not require the exact inverse
essian matrix. For an N-dimensional problem, only 4mN opera-
ions are needed in L-BFGS to calculate the descent direction at an
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teration k, indirectly from the m previous values of sk � xk�1 �

k of the system variable x (30, 36). A value of m � 5 is
ecommended. For a large N system, the number of operations
ecomes significantly less than O(N2), as involved in BFGS cal-
ulation. Starting from a positive definitive approximation of the
nverse Hessian H0 at x0, L-BFGS derives the optimization vari-
bles by iteratively searching through the solution space. At an
teration k, the calculation proceeds as follows:

a) Determine the descent direction pk � �Hk �f (xk);
b) Line search with a step size �k � arg

a�0
min f�xk � �pk�, where

� � 0 is the step size defined in the L-BFGS software
package;

c) Update xk�1 � xk � �kpk;
d) Compute Hk�1 with the updated Hk.

t each iteration a backtracking line search is used in L-BFGS (30)
o determine the step size of movement to reach the minimum of
along the ray xk � �pk. For convergence � has to be chosen such

ig. 4. Narrow band metric as a function of iteration step for
alculations with 100 different initial values. Both rigid (a) and
eformable (b) registration calculation are plotted. In both cases, a
ypical convergence is displayed in red. Rigid registration conver-
ence is achieved after less than 10 iterations. Deformable regis-
ration converges in approximatively 100 iterations.
hat a sufficient decrease criterion is satisfied, which depends on r
he local gradient and function value and is specified in L-BFGS by
he Wolfe conditions (30).

During an image registration process, the above iterative calcu-
ation based on L-BFGS algorithm continues until either a pre-set
aximum number of iterations (typically, 500 iterations) is

ig. 5. The mutual information metric (a) and the narrow band
etric (b) as a function of relative displacement in the xy plane.
wo identical magnetic resonance images (from Fig. 2a) were used
s the input fixed and floating images. The insert in each panel
hows the corresponding metric when the displacement is confined
o the x-direction. The mutual information metric is seen to be very
noisy” and multiple maxima exist. The narrow band metric, on
he other hand, is much smoother and has a single minimum.
eached or the following stopping criterion is fulfilled:
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�� f(xk)�2

max(1, �xk�2)
� � (2)

n our calculations, we chose � � 10�6. It is possible that L-BFGS
ay produce unrealistic deformations in finding the minimum of

he metric. Similar to previous investigators (29), we used the
ounded version of L-BFGSB (37), where the variables represent-
ng deformation vectors are restricted to within certain limits. The
onvergence behavior of the L-BFGS algorithm is studied by
tarting the registration calculation with different random initial
ositions. Intermediate values obtained during the optimization
alculations are recorded and plotted for comparison.

mage acquisition
The MRI images (marked as FSE-xlT2 fat) were acquired using
3-Tesla MR scanner (Signa; GE Medical Systems, Milwaukee,
I). The radiofrequency (RF) excitation was achieved by using

he whole body birdcage resonator, and the MR signal was re-
eived using a 4-element phased-array antenna (GE Medical Sys-
ems) combined with a rigid single loop receiver-only surface coil
ith a fixed geometry that enables optimal tuning and matching for
se at 3T. The coil dimensions are similar to transrectal ultrasound
ransducers used for routine sonographically guided prostate im-
ging and biopsy. Patient CT images were acquired using a
Q5000 CT Scanner (Philips Medical Systems, Cleveland, OH).

ehavior of the metric function
Monitoring the change of the metric function under the relative

isplacement of two input images provides a useful examination of
he behavior of the solution space for image registration. To better
nderstand the narrow band based normalized correlation metric,
e used two identical images as input and computed the function
y successively translating them along the x- and y-directions. In
his case, it is intuitively conceivable that the value of the metric
unction is minimum when they are perfectly aligned and increases
s the two images are displaced away from each other. A desirable
etric function should exhibit a single distinct global minimum

nd vary smoothly as the two images slide away from each other.
or comparison, the same calculation was also performed for
onventional mutual information metric (27). The two types of
unctions are presented and reviewed by using 3D graphs, where
urface height represents the metric value.

egistration accuracy
In this study, the input images involved an MRI as the fixed

mage and the same image with intentionally introduced deforma-
ions as the floating images. The ability of the narrow band
lgorithm to restore from the deformation was tested. The original
mage in this study serves as the “gold standard” for the evaluation.

ig. 6. The narrow band metric as a function of relative displace-
ent in the xy plane and in the x-direction when the narrow band
idth takes a value of 3 mm (a), 5 mm (b), and 15 mm (c). For a

mall width, the narrow band has a small capture radius with the
inima of the metric accentuated. Increasingly narrow band width

nlarges the capture radius. The computation becomes more de-
anding in this case owing to the increased number of narrow

and nodes. A width of approximately 6 mm seems to balance the

wo limiting factors.
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Fig. 7. Registration result for two clinical cases. The first row shows the colored overlay of the endorectal-based
magnetic resonance and computed tomography images before and after rigid and after deformable image registration for
the first case. The computed tomography image is used as the background. The second row shows the same for the

second clinical case.



F
t
n
v
c
t
s
w
l
b
b
o
F
f

C

p
c
p
i
r
c

C

d
p
f
fi
i
t
r
d
t
i
i
a
�
i
i
t
s

b
p
m
o
n
p
a
t
i
t
s
b

B
m

b
t
r
g
t
t
m
o
d
s
s
m
o

i
t
d
m
w
i
p
n
r
w
t
s
t
m

d
p
s
l
i
i
m
t
b
t
r
c
r
p
l
t
p

E
i

a
s
f

603Narrow band deformable registration of prostate imaging studies ● E. SCHREIBMANN and L. XING
igures 3a and 3b show the original and deformed MR images for
he first patient. The deformation was generated by assigning the
odes in the original image with a set of random displacement
ectors. Eight grid points with spacing of 2.4 cm were used in the
alculation. We used the proposed algorithm to restore the distor-
ions and evaluated the algorithm’s ability to recover the gold
tandard. The difference between the original and restored images
as quantified in terms of displacements of visible anatomic

andmarks. The images before and after restoration were reviewed
y using the popular checkerboard display tool, where images to
e compared are merged together in a chess-like pattern. The
riginal and deformed images for the second case are shown in
igs. 3e and 3f. Similar calculation and analysis were performed
or this case.

ase study
The narrow band based image registration algorithm was ap-

lied to register ER-based MRI and CT prostate images for two
linical cases. The MRI and CT images were acquired using the
rotocols described earlier. The colored overlay of the two types of
mages was generated before and after the narrow band image
egistration calculations for assessment of the results. For each
ase, the convergence of the calculation was also studied.

RESULTS AND DISCUSSION

onvergence analysis
The algorithm’s ability to obtain the same result with

ifferent starting conditions was examined. In Fig. 4, we
lot the metric value as a function of iteration step starting
rom 100 different initial transform parameters, {xi}, for the
rst case shown in Fig. 3. The input images in this study

ncluded an ER-based MRI as the floating image and the
reatment planning CT as the fixed image. Two types of
egistrations were studied here: a rigid (Fig. 4a) and a
eformable (Fig. 4b) registration. For the rigid registration,
he normalized correlation converges to �0.130, after 11
terations. The final value of the metric is found to be
ndependent of the initial starting conditions. For deform-
ble registration, the minimum metric value was found to be
0.399. The longest run in obtaining this solution was 218

terations. Once again, the result was independent of the
nitial starting conditions. For each type of registration, a
ypical evolution of the metric as a function of the iteration
tep is displayed in Fig. 4 in the red curve.

A narrow band is a compact representation of a structure
ecause only points adjacent to its border are used. This
ermits a reduction of memory requirements for the opti-
ization process, with computation times reduced by 1 or 2

rders of magnitude. For this particular study, L-BFGS
eeded approximatively 100 iterations to converge. Com-
ared with some other potentially more powerful evolution-
ry algorithms, an analysis not shown here revealed that a
ypical 1 � 1 optimizer (38) needs as much as 100,000
terations for convergence. This is reflected in the compu-
ation times, where 15 min are needed by L-BFGS for a full
tudy of 256 � 256 � 30 voxels, vs. more than 1 h needed

y a 1 � 1 optimizer. v
ehavior of mutual information and narrow band
etric functions
In Fig. 5, we plot the mutual information and narrow

and metric values when the two identical input images are
ranslated on the x-y plane. Because the attempt here is to
egister an MRI image (Fig. 5a) with itself, the position of
lobal minimum is known to correspond to a null transla-
ion. The variation of the metrics as a function of the
ranslation in the x-direction is plotted as inset in Fig. 5. The
utual information metric space, presented in Fig. 5a, was

btained with settings of 100 spatial samples and 0.4 stan-
ard deviation (27). While the general trend toward a global
olution located at the center can be deduced, the metric
pace is noisy and many local minima are present. This
etric is thus not suitable to be used with gradient-based

ptimizers.
As can be seen from Fig. 5b, the search space correspond-

ng to the normalized correlation metric is much smoother
han that of the mutual information metric (27) and has a
istinct minimum at the expected location. The local mini-
um at the left is resulted from the alignment of the rectum
ith the prostate. However, this minimum is shallower,

ndicating a poor fit, owing to the difference in rectum/
rostate shapes. We note that with the selection of different
arrow band widths it is possible to change the capture
adius of the metric function (Fig. 6). As the narrow band
idth increases, the metric capture radius increases; and at

he same time, the computation time needed to find the
olution also increases since more nodes are involved. In
his trade-off, we found a narrow band width of approxi-
atley 6 mm to be optimal for practical application.
The narrow band metric uses both voxel intensity and

elineated structures information for the registration. For
rostate MRI-CT registration, an intensity-based metric
uch as the mutual information is intractable owing to the
ack of clearly differentiable anatomic structures in the CT
mages (Fig. 2b) and the presence of a broad range of voxel
ntensities in the MRI image (Fig. 2a). The narrow band
etric compensates for the inconveniences by restricting

he calculation to selected regions of interest. The narrow
and not only represents the shape of the contour but also a
ransition zone around it. This results in a large capture
adius in the optimization calculation. As compared with
ontrol-points based methods, where the registration accu-
acy depends heavily on the specification of the control
oints, the narrow band based image registration entails
ittle information from the user other than the delineation of
he involved organs, which one has to do anyway for the
urpose of radiation treatment planning.

valuation of the algorithm’s ability of restoring from an
ntentionally introduced deformation

For the deformation depicted in Fig. 3b, ideally, the
pplication of a deformable image registration technique
hould be able to restore its original shape when the unde-
ormed image (Fig. 3a) is used as a reference. To better

isualize the intentionally introduced deformation, in Fig.
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c we show the checkerboard image of the original and
istorted image. The initial deformations up to 10 mm in the
riginal image are clearly visible in the checkerboard tran-
ition zone. To use the narrow band based registration tool,
he organs in the reference image were outlined and narrow
ands were generated. The restored image is shown in Fig.
d along with the original reference image in a checker-
oard fashion. Recovered and gold standard reference im-
ges differ by less than 2 mm, as assessed by comparing
isplacements of the anatomic landmarks between neigh-
orhood squares of the checkerboard. The original and
estored images are highly similar, with virtually no differ-
nce visible in the checkerboard. Similar level of accuracy
as found for the second case studied (Figs. 3e–3h). In both

ases, we found that the calculation converged to the antic-
pated solution with fewer than 220 iterations.

ase study
In Fig. 7, we show the prostate MRI-CT registration

esults for two clinical cases. The same colored overlay is
onstructed before (Fig. 7a for Case 1 and Fig. 7d for Case
) and after registration calculation (Fig. 7c for Case 1 and
ig. 7f for Case 2). In the colored overlay, the original CT

mage is used as the image background. The colored overlay
epresents the MRI image, with a colored scheme corre-
ponding to different MRI pixel intensities, red for high
ntensities and blue for low intensities. Because of the use of
he ER probe, the shapes of both rectum and prostate were
eformed. As can be seen from Figs. 7a or 7d, the anterior
urface of the rectum was flattened. After the rigid regis-
ration calculation, we noticed that the gross misalignment
as removed (Figs. 7b and 7e). As expected, there was still

ubstantial deformation after the initial rigid registration
hat needs to be corrected by a deformable image registra-
ion algorithm. In the next stage of the registration calcula-
ion, the deformable model was “switched on,” which re-
tored the shapes of the rectum and prostate to their regular
orms as observed in the CT images. This can be seen from

igs. 7c for the first case or Fig. 7f for the second case. o
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DOSE–VOLUME BASED RANKING OF INCIDENT BEAM DIRECTION AND
ITS UTILITY IN FACILITATING IMRT BEAM PLACEMENT

EDUARD SCHREIBMANN, PH.D., AND LEI XING, PH.D.

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA

Purpose: Beam orientation optimization in intensity-modulated radiation therapy (IMRT) is computationally
intensive, and various single beam ranking techniques have been proposed to reduce the search space. Up to this
point, none of the existing ranking techniques considers the clinically important dose–volume effects of the
involved structures, which may lead to clinically irrelevant angular ranking. The purpose of this work is to
develop a clinically sensible angular ranking model with incorporation of dose–volume effects and to show its
utility for IMRT beam placement.
Methods and Materials: The general consideration in constructing this angular ranking function is that a
beamlet/beam is preferable if it can deliver a higher dose to the target without exceeding the tolerance of the
sensitive structures located on the path of the beamlet/beam. In the previously proposed dose-based approach,
the beamlets are treated independently and, to compute the maximally deliverable dose to the target volume, the
intensity of each beamlet is pushed to its maximum intensity without considering the values of other beamlets.
When volumetric structures are involved, the complication arises from the fact that there are numerous dose
distributions corresponding to the same dose–volume tolerance. In this situation, the beamlets are not indepen-
dent and an optimization algorithm is required to find the intensity profile that delivers the maximum target dose
while satisfying the volumetric constraints. In this study, the behavior of a volumetric organ was modeled by
using the equivalent uniform dose (EUD). A constrained sequential quadratic programming algorithm (CFSQP)
was used to find the beam profile that delivers the maximum dose to the target volume without violating the EUD
constraint or constraints. To assess the utility of the proposed technique, we planned a head-and-neck and
abdominal case with and without the guidance of the angular ranking information. The qualities of the two types
of IMRT plans were compared quantitatively.
Results: An effective angular ranking model with consideration of volumetric effect has been developed. It is
shown that the previously reported dose-based angular ranking represents a special case of the general formalism
proposed here. Application of the technique to a abdominal and a head-and-neck IMRT case indicated that the
proposed technique is capable of producing clinically sensible angular ranking. In both cases, we found that the
IMRT plans obtained under the guidance of EUD-based angular ranking were improved in comparison with that
obtained using the conventional uniformly spaced beams.
Conclusions: The EUD-based function is a general approach for angular ranking and allows us to identify the
potentially good and bad angles for clinically complicated cases. The ranking can be used either as a guidance
to facilitate the manual beam placement or as prior information to speed up the computer search for the optimal
beam configuration. Thus the proposed technique should have positive clinical impact in facilitating the IMRT
planning process. © 2005 Elsevier Inc.
Intensity-modulated radiation therapy, Inverse planning, Dose optimization, Beam orientation.
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INTRODUCTION

everal previous studies have indicated that the selection of
eam directions plays an important role in intensity-modu-
ated radiation therapy (IMRT) planning (1–8). For a given
atient, a practical challenge is how to obtain the optimal
eam configuration within a clinically acceptable time. The
nfluence of a candidate beam configuration to the final dose
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istribution is not known until an inverse planning with the
onfiguration is done, which necessitates a trial-and-error
rocess for the determination of a clinically sensible IMRT
eam configuration (9–11). The use of computer optimiza-
ion promises to automate the beam selection process (12–
5). In practice, however, beam orientation optimization is
omputationally intensive because of the interplay between
eam directions and beamlet intensities. Many researchers
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ave attempted to use single beam ranking to reduce the
earch space (16–23). Although such technique ignores the
eam interplay and does not yield the final beam configu-
ation, it affords useful information on which are potentially
ood/bad directions and is thus valuable to aid the beam
lacement (24–26). Furthermore, the information can be
sed as a priori knowledge to greatly improve the conver-
ence behavior of the beam orientation optimization and to
peed up the calculation process (21).

Single beam ranking functions can be divided into geom-
try based and dosimetry based models. The underlying
ifference between these models lies in what fundamental
uantities are used to define the optimality. The former
pproach is essentially an extension of beam’s eye view
olumetrics (24, 27, 28) and ranks a beam direction based
n the fractional volume of sensitive structures falling into
he incident beam (16, 22, 26). The dosimetry-based tech-
ique, on the other hand, ranks a beam direction based on
atient geometry as well as the a priori dose tolerance
nformation of the involved sensitive structures (17, 18, 20).
n line of the latter approach, Pugachev and Xing proposed
heuristic beam’s eye view dosimetric (BEVD) model in
hich the ranking of an incident beam is gauged by the
aximally deliverable dose to the planning target volume

PTV) without exceeding the tolerance of the sensitive
tructure located on the path of the beam (20). While the
dea of their technique is quite general, practical implemen-
ation is hindered when the involved sensitive structure is a
arallel organ whose tolerance cannot be described by a
ingle dose value but a dose–volume relation. In this situ-
tion, the method described in Pugachev et al. (20) is not
irectly applicable and the evaluation of the single beam
anking becomes very nontrivial.

The purpose of this work is to develop a clinically sen-
ible angular ranking model with incorporation of dose–
olume effect and to show its utility for IMRT beam place-
ent. Instead of working in the dose domain, we establish
more adequate formalism based on the concept of equiv-

lent uniform dose (EUD) (29, 30). As is well known, the
ose–volume effect of a structure is well described (31–33)
y using the EUD, which is phenomenologically defined as:

EUD � � 1

N�
i

Di
a� 1

a

, (1)

here N is the number of voxels in the structure, and a is the
umor or normal tissue-specific parameter that describes the
ose–volume effect. When a � �, the EUD is equal to
he maximal dose, and when a � ��, the EUD is equal
o the minimum dose. Tumors generally have large neg-
tive values of a, whereas serial critical structures (e.g.,
pinal cord) have large positive values and parallel critical
tructures that exhibit a large volumetric effect (e.g., liver,
arotids, and lungs) have small positive values. A virtue of
he EUD-based approach is that the volumetric status of an

rgan can be characterized by a single parameter instead of p
wo (dose and volume), making the incorporation of dose–
olume effect in the single beam ranking more tractable. A
ew recent works (34–36) have attempted to relate EUD-
ased formalism to dose–volume constraints, dose-based
nverse planning, and multiobjective optimization, and sig-
ificant insights have been obtained in this regard.

METHODS AND MATERIALS

ackground
The figure of merit of a beam direction is generally
easured by how much dose can be delivered to the target

nd is calculated using the a priori dosimetric and geomet-
ic information of the given patient. For computational
urposes, a beam direction is divided into a grid of beam-
ets. For a serial organ, each beamlet crossing the target is
n independent element and is assigned to the maximum
ntensity (20). After a forward dose calculation using the
aximum beam intensity profile, the score of the given

eam direction (indexed by b) is obtained according to

Sb �
1

NT
�

n�Target
�dnb

DT
P�2

, (2)

here dnb is the dose delivered to the voxel n by the beam
rom the direction indexed by b, NT is the number of voxels
n the target, and DT

P is the target prescription.
When the tolerance of the sensitive structure is more

ccurately assessed by volumetric information, a modifica-
ion of the above procedure is needed to rank the beam
irection. The main computational difficulty here is that the
eamlets cannot be dealt with independently as there are
sually multiple dose distributions for a given dose–volume
olerance. A practical and efficient approach is to use the
UD model described earlier to solve the problem.

UD as a general means for characterizing the
ose–volume tolerance
The dose volume tolerance of a sensitive structure is
ore conveniently described by a single variable, namely,

he EUD tolerance. The value of EUD tolerance (and the
alue of a in the EUD formula [Eqn. 1]) for a given organ
an be obtained from the literature (37). For a given case,
he figure of merit of a beam direction should now be
easured by what the beam could achieve dosimetrically
ithout exceeding the EUD tolerances of the organs located
n the path of the beam. Although the score can still be
valuated by using Eq. 1 based on the integral dose to the
arget, the method of determining the maximum intensity
rofile for a given beam direction must be modified. In this
ituation, the beamlet intensities of the maximum intensity
rofile can no longer be determined individually because of
he degenerate nature of a dose–volume tolerance (i.e., there
re more than one dose distributions for a given dose–
olume tolerance). Generally, there are multiple intensity

rofiles, each corresponding to a possible dose distribution
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f the given EUD tolerance. A computer algorithm is nec-
ssary to find the one that delivers the maximal integral dose
o the target volume. For this purpose, we mathematically
ormulated the problem into a constrained optimization, in
hich the objective is to maximize Sb defined in Eq. 2 with

he EUDs of the sensitive structures below their tolerance
alues.

alculation of beam ranking
The constrained optimization problem was solved using a

agrange multiplier method (38). For the system that we are
ealing with here, the Lagrange function takes the form of

L�x, �� � Sb�xb� � �
i

�bi
i �EUDtol

i �xb� � EUDi�xb��,

(3)

here x is the system variable vector (i.e., the beamlet
ntensities for a given beam), i is the structure index,
UDtol

i �x� and EUDi�x� are the EUD tolerance and com-
uted EUD, respectively, and �bi

i is the Lagrange multiplier.
constrained sequential quadratic programming algorithm

CFSQP) (39) with the Armijo type arc search mode (40)
as employed to optimize the system described above.
ariables to be optimized included the intensities of the
eamlets passing through the PTV. A major advantage of
he algorithm is that it is capable of dealing with nonlinear
nequality constraints (40). The calculation starts with an
nitial intensity profile, in which each beamlet is assigned
ith a small but random value, and then iteratively maxi-
izes the angular ranking function while satisfying the

onstraints. Briefly, the k-th iteration can be described by
he following steps:

. Calculate the inverse Hessian matrix, Hk, from the gra-
dient of L(x,�);

. Determine the descent direction pk � �Hk�ƒ(xk);

. Line search with a step size �k � arg
��0

min f�xk � �pk�,
where � is the step size defined in the CFSQP software
package;

. Update xk�1 � xk � �kpk;

. Check stopping criteria. If not satisfied, repeat from 1.

CFSQP calculation stops either when a maximum num-
er of 200 iterations is reached or when the difference in the
alues of the ranking function between two successive
terations becomes less than 10�6. All calculations are im-
lemented in an in-house treatment planning platform (6).
It is important to emphasize that the goal of the above

alculation is not to find the optimal IMRT solution. In-
tead, we are searching for the beam profiles that deliver the
ighest achievable dose in the target without violating the
ose–volume or EUD tolerances of the involved sensitive
tructures. In the final solution, any increase in the beamlet
eights would lead to a dose exceeding the volumetric
olerance of a sensitive structure. I
ptimization of IMRT beam profiles
The flow chart of the plan optimization process is shown

n Fig. 1. We used a hybrid of a gradient-based algorithm
LBFGS) and a genetic-like algorithm (NSGA-IIc) (41) to
btain the optimal IMRT plan after the beam configuration
s selected. The LBFGS is specially designed for dealing
ith systems with a large number of variables (42). A

east-squares cost function was used as the objective for
ach structure, with the prescription dose set to 0 for sen-
itive structures to continuously lower the doses to the
ensitive structures if there is room for improvement. The
etails of the LBFGS algorithm and our experience in
mplementing the algorithm were reported in a previous
ork (43). The EUDs of the involved structures were em-
loyed to generate the solution pool through the combina-
ional use of a genetic-like algorithm (NSGA-IIc) (41) (see
ig. 1 flow chart for details). At each iteration, the EUDs of

he new solution are compared with the plan within the
olution pool and ranked according to the rules stated in the
ow chart. A solution that violates less the EUD constraints
as a higher probability to survive in the next generation
nd thus a larger chance to be selected as the final solution.

ig. 1. Flow chart of the overall plan optimization process. EUD �
quivalent uniform dose.
n this sense, the EUDs here act as “soft constraints” in
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onventional optimization or the decision-function in the
wo-step optimization proposed by Xing et al. (44). This
etup has the advantage that the EUD constraints do not
irectly interfere with the objective function of the system.
his model of implementing the constraints was found to be
fficient in a previous study (6).

ase studies
The performance of the above algorithm and the advan-

age of the proposed angular ranking technique are illus-
rated using two clinical IMRT cases: an abdominal tumor
ith the kidney, spinal cord, and liver delineated as sensi-

ive structures, and a head-and-neck case adjacent to the
arotid and spinal cord. For each case, we computed the
oplanar angular score function (from 0° to 360°) in an
ncrement of 5°. The photon beam energy was 15 MV for
oth cases.
To understand the behavior of the technique in modeling

ifferent degrees of volumetric effect, we computed the

Fig. 2. (a) Angular ranking function for a series of a pa
radiation therapy planning are labeled by arrows. The cu
using the approach described in Pugachev et al. (20). (b) A
tolerances and model parameters superimposed on the
radiation therapy planning are shown by arrows. (c) Dose
function.
core function for a series of values of parameter a in each
ase. As a increases to a large positive value, the organ
ehaves as a serial structure and the score function obtained
y using the proposed technique should converge to the
esults obtained using the method outlined by Pugachev and
ing (20).
To illustrate the advantage of the technique, we generated
five-field IMRT treatment plan with the beam configura-

ion obtained under the guidance of the computed angular
core function for each patient. The plans were then com-
ared with that obtained with five uniformly spaced beams
the beam directions are 0°, 72°, 144°, 216°, and 288°). In
ractice, 5�7 beams are often used for IMRT treatment
ecause a good compromise can be achieved between de-
ivery efficiency and the treatment quality. After the beam
onfiguration was determined, the beamlets were optimized
sing a multiobjective approach described above (see Fig.
) to yield the final IMRT plan. The optimization result is a
atabase of plans representing the best achievable tradeoff

rs. The selected five directions for intensity-modulated
picted by the open circles represents the result obtained
r score obtained with published equivalent uniform dose
t’s geometry. Angles selected for intensity-modulated
me histograms corresponding to the intensity-modulated
ramete
rve de
ngula
patien
–volu

radiation therapy plans obtained with (dot-dashed curves) and without (solid) the guidance of the angular ranking
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etween optimization objectives. The dose–volume histo-
rams (DVHs) of the target and sensitive structures were
sed for the plan comparison.
To better assess the performance of the proposed tech-

ique, two additional experiments were carried out for the
ead-and-neck case. First, we intentionally selected the set
f beams with the worst (corresponding to the dips of the
eam orientation ranking function) and the best (corre-
ponding to the peaks of the beam orientation ranking
unction, as chosen above) individual performances. The
esulting IMRT plans were then compared quantitatively.
his study highlights the importance of beam selection and

he possible influence of individually selected beams. For
he abdominal patient, we also investigated the differences
n the final IMRT treatment plans obtained using the new
ethod with EUD-based angular score function and the

revious non-EUD based score function.

RESULTS

bdominal case
The angular score functions corresponding to different

alues of the a parameter are presented in Fig. 2a along with
he score obtained using the method reported in Ref. 20 for
erial organs. As can be intuitively anticipated, the EUD-
ased angular score function approaches to the latter curve
denoted by the circles) as a increases. The values of EUD
olerances for the involved organs were taken from the
iterature (Table 1) (45). The score function corresponding
o the a parameters extracted from Sang and Dunscombe
45) is also presented in Fig. 2b, where a polar graph has
een overlayed on the patient’s geometry to better interpret
he curve. The influence of the sensitive structures is clearly
eflected in the score function. The lowest scores occur at
he angles close to 50° and 320°, from which directions the
eam passes through the kidneys and the liver. The score
unction peaks at directions where a large portion of PTV
an be irradiated with minimal intersection of sensitive
tructures.

A general way for beam placement after the BEVD score
s obtained is to start with an equispaced beam configuration
ith one of the beams placed at the angle with the highest
EVD score value. The angular score described above is

Table 1. EUD tolerances (45) and calculated
and BEVD-selected be

�
EUD tolerance
EUD (equispaced beams)
EUD (BEVD-selected beams)
EUD (beams with non-EUD-based BEVD)

Abbreviations: BEVD � beam’s eye view d

� intensity-modulated radiation therapy.
btained under the assumption of a single incident beam and
hus reflects only one facet of the beam configuration se-
ection problem. The angles of the rest of the beams are
djusted in such a way that the final beam configuration
alances the requirement of the single beam BEVD score
which favors placing beams at the peak positions of the
EVD score function) and the interplay between the beams

which prefers a beam configuration with the beams away
rom each other). In other words, to obtain the final beam
onfiguration, it is required to consider the interplay be-
ween the incident beams. The merit of the proposed tech-
ique is that it is capable of identifying potentially “good”
nd “bad” directions even when the sensitive structures are
olumetric in their responses to radiation, and thus provides
useful guidance for IMRT beam placement. In particular,

t permits us to avoid placing beams in the “bad” beam
irections (the dips of the score function). One would oth-
rwise have to choose a beam configuration entirely based
n empiric “guessing.” Based on the computed score func-
ion, we placed the five incident beams at 35°, 95°, 190°,
80°, and 335°, as indicated by the arrows in Figs. 2a and
b. The DVHs of the corresponding IMRT plan are plotted
n Fig. 2c as dot-dashed lines. The DVHs of a conventional
MRT plan with five equispaced beams are also plotted in
ig. 2c as solid curves.
The computed EUD values of the involved structures for

MRT plans with equispaced beams and newly proposed
UD-based and non-EUD-based BEVD-selected beams are
lso listed in Table 1. We observed that the IMRT plan with
he beam configuration selected under the guidance of the
UD-based scoring function represents the best treatment
hen judged using the EUDs of the involved structures.
his is not surprising because the EUDs of various organs
ere fully considered during the beam configuration selec-

ion. The IMRT plan with beams derived from the non-
UD-based score function (the five beam directions derived

rom this score function were 20°, 120°, 175°, 260°, and
50°) was inferior to the plan mentioned above but better
han that of the equispaced beam configuration. As seen
rom the table and Fig. 2c, the liver and both kidneys
paring are improved for the same PTV coverage. For
xample, the fractional volume of the right kidney receiving
dose of 15 Gy is reduced from 37% to 23% and the

alues for IMRT plans with five equi-angled
r the abdominal case

eft
dney

Right
kidney Liver Cord

5.1 5.1 0.59 7.4
8 28 39 43
6.82 11.96 8.77 5.31
4.24 8.34 6.97 6.68
5.23 9.58 7.03 6.12

tric; EUD � equivalent uniform dose; IMRT
EUD v
ams fo

L
ki

2
1
1
1
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eductions in lower doses are even significant. In the IMRT
lan with BEVD-selected beam configuration, however, the
aximum dose to the spinal cord is increased slightly. This

s because a relatively high tolerance EUD was assigned to
he cord, which therefore imposed less constraint on the
ngular ranking when the beam passes through it. For this
ase, the most dose-limiting organ is the left kidney when
ne attempts to escalate the target dose. Hence, the slight
ncrease in the cord dose has little clinical impact. In a
ense, the increase in the cord dose is an indication that the
ewly introduced ranking function can more effectively
alance the requirements of the involved structures.
Convergence behavior of the CFSQP algorithm is dem-

nstrated by plotting the angular score as a function of
teration step (Fig. 3a) for the 255° direction. The EUDs of
he sensitive structures at each iteration step are shown in
ig. 3b. With the chosen initial beamlet intensities (small
ut random values), the angular score is progressively in-
reased while constraints are progressively saturated, lim-
ted by the tolerances of the sensitive structures. Constraints
f the sensitive structures that are not on the path of the
eam remain to be constant throughout the iterative calcu-
ation. In this particular situation, the right kidney is the
ost dose-limiting organ. Of course, being dose-limiting for

ne of the beams does not mean that the organ is dose-
imiting when all the beams are considered. Indeed, as seen

ig. 3. Convergence behavior of the CFSQP algorithm for the 255°
eam direction. Presented are evolutions of the angular ranking (a)
nd the sensitive structure constraints (b) as function of the itera-
ion step. Only the right kidney and the liver influence the algo-
ithm’s convergence because other structures are not on the path of
he beam.
rom Fig. 2b and Table 1, it turns out that the left kidney is 2
ost dose-limiting for the chosen beam configuration and
eceives the highest dose or EUD. Generally speaking, this
s not a symmetric system from the dosimetric point of
iew, even though the two kidneys have the same EUD
olerance. The asymmetric behavior is caused primarily by
he presence of the liver near the right kidney. When the
ose to the liver is limited to its EUD tolerance, a by-
onsequence is that the dose to the right kidney is also
owered. On the other hand, the left kidney is the sole
ose-limiting organ on the left side and a much higher dose
s delivered to it to deliver the prescribed dose to the target
olume. The asymmetry here can also be seen from the
ngular ranking function (Fig. 2a).

ead-and-neck case
Dependence of EUD score on the a parameter is pre-

ented in Fig. 4a. As a increases, the angular score curve
pproaches to the curve computed using the method out-
ined in Pugachev et al. (20) (denoted by the open circles).
his calculation provides a useful check of the new algo-

ithm. It is interesting to note that the change in the peak
ositions of the angular function can be as large as 20° when
he sensitive structures are changed from serial (correspond-
ng to a high a value) to parallel (corresponding to a low a
alue). The change of the score function in amplitude is also
triking (from �0.2 to �0.8 at 80° and 280°). As the
tructure becomes more volumetric (e.g., when a � 0.1), the
core function becomes less “spiky.”

When the published values of EUD tolerances (45) are
sed (Table 2), the lateral directions passing through parotid
re disadvantageous, whereas the anterior-posterior direc-
ions passing through the cord have slightly higher rankings.
he polar score function overlayed on the patient’s geom-
try is presented in Fig. 4b. It is clearly seen that low scores
ccur at �90° and �270°, from which directions the beams
ass through the parotids. Moderate scores appear at 0° and
80°, from which directions the beams pass through the
ord. In this case, as can be intuitively imagined, high
ngular rankings appear in the oblique directions when the
eam is less intercepted by the sensitive structures.
Under the guidance of the ranking function depicted in

ig. 4a, we selected 45°, 125°, 190°, 245°, and 310° for
he five-beam IMRT treatment. The selected directions
re indicated in Figs. 4a and 4b by arrows. The DVHs of
he involved structures are shown in Fig. 4c (dot-dashed
ines) along with the results obtained by using five uni-
ormly spaced beams. As a result of BEVD guidance for
eam placement, the IMRT plan is improved signifi-
antly. Together with a dose improvement in dose cov-
rage of the PTV, all sensitive structures are better
pared. The improvement in brainstem sparing is most
istinct as compared with the conventional plan. The
esulting EUD of the brainstem was reduced by �65%
see Table 2). The reduction in the parotid EUD was
ound to be �16%. The fractional volume of the spinal
ord receiving a dose of 14 Gy is reduced from 32% to

2%. Clinically, the improvement in the dose homoge-



n
t
d
y

o
c
t
s

590 I. J. Radiation Oncology ● Biology ● Physics Volume 63, Number 2, 2005
eity within the PTV may have some practical implica-
ions in enhancing the tumor control probability. In ad-
ition, better sparing of the involved sensitive structures
ields room for possible boost treatment of the patient,

Fig. 4. (a) Angular ranking function for a series of val
directions for intensity-modulated radiation therapy plan
circles represents the result obtained using the approach
with published equivalent uniform dose tolerances and
Angles selected for intensity-modulated radiation therap
corresponding to the intensity-modulated radiation therap
the guidance of the angular ranking function.

Table 2. EUD tolerances (45) and calculated
and BEVD-selected beam

�
EUD tolerance
EUD (equispaced beams)
EUD (BEVD-selected beams)
EUD (beams with worst BEVD scores)
Abbreviations as in Table 1.
r, in the case of recurrence, for the retreatment. The
onvergence behavior of the optimization calculation for
he 180° direction is presented in Fig. 5. Once again, it is
een that the calculation converges rapidly. The con-

equivalent uniform dose parameters. The selected five
re labeled by arrows. The curve depicted by the open

bed in Pugachev et al. (20). (b) Angular score obtained
l parameters superimposed on the patient’s geometry.
ing are shown by arrows. (c) Dose–volume histograms
s obtained with (dot-dashed curves) and without (solid)

alues for IMRT plans with five equi-angled
the head-and-neck case

id Brainstem Cord Score

4.6 7.4
49 43

7 27.55 20.99 1.30
0 9.50 19.56 1.33
1 22.82 20.29 1.27
ues of
ning a
descri
mode

y plann
y plan
EUD v
s for

Parot

5.0
30
16.6
14.0
18.7
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traints imposed by the parotid glands are satisfied from
he beginning of the iterative calculation because the
eam does not pass them.
In Fig. 6 we compare the DVHs for IMRT plans obtained

ith five beams placed at the best and worst individual
erformance directions as revealed by the BEVD score
unction. The worst beam directions were identified to be
5°, 80°, 170°, 280°, and 340°. As seen from Fig. 6, the
TV dose was deteriorated uniformly when the worst beam
onfiguration was used for IMRT planning. Simultaneously,
he doses to all the sensitive structures are increased as
ompared with that with best individual performance
eams. The computed EUDs listed in Table 2 also support
he above observation. This comparison study underscores
he importance of beam orientation selection and provides
dditional evidence that the BEVD is a useful tool to facil-
tate IMRT planning.

DISCUSSION

Increasing the effectiveness of radiation therapy depends
n improving our understanding of dose–volume factors
ffecting tolerance and local control and developing tech-
iques for incorporating the volumetric data into IMRT
reatment plan optimization. To rank an incident beam di-
ection in the presence of volumetric organs, a conceptually

ig. 5. Convergence behavior of the CFSQP algorithm for the 180°
eam direction. Presented are evolutions of the angular ranking (a)
nd the sensitive structure constraints (b) as function of the itera-
ion step. The cord and brainstem limit the dose deliverable to the
lanning target volume in this beam direction.
imple approach is to sample the tolerance dose distribu- t
ions of the structures according to the dose–volume toler-
nce requirement and to compute the score for each sam-
ling (46, 47). With multiple sampling, we can obtain a
band” of scores rather than a single score curve. The best
chievable target dose corresponds to the top of the band,
hich can be used for guiding the beam placement. While

onceptually simple, sampling requires a large amount of
omputation and is difficult to implement. In this work we
roposed a more practical and efficient approach to solve
he problem. A more natural and computationally efficient
ethod to consider the dose–volume effect in the angular

anking is to use the EUD model, which was first developed
y Niemierko to characterize the dose–volume effect. A
ajor feature of the EUD formalism is that it allows us to

se a single parameter to capture the dosimetric or volu-
etric characteristics of an organ. Several studies (34, 36,

8–50) have shown the utility of the formalism in plan
ptimization.
One of the technical hurdles in calculating the EUD-

ased angular score ranking is that, for a given set of EUD
olerances, there are multiple intensity profiles and the one
hat yields the highest score function (2) needs to be found
sing a constrained optimization algorithm. We found that
he CFSQP implemented in this work was capable of
uickly converging to a stable solution for the cases studied.
s described in the previous section, the IMRT plans ob-

ained with beam configurations chosen based on the EUD-
ased score compares favorably with IMRT plans obtained
sing other approaches, including equispaced beams and
eams obtained under the guidance of a non-EUD-based
core function. We note that, because the non-EUD-based
core function represents a special case of the general EUD-
ased function, there may be cases where the EUD-based
core yields the same IMRT plan as the non-EUD-based

ig. 6. Comparison of dose–volume histograms of intensity-mod-
lated radiation therapy plans with the best and worst individual
erformance directions as identified by the angular ranking func-

ion.
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core (when all the organs involved are serial). However, it
s important to keep in mind that the EUD-based function is

more general approach and is needed when volumetric
rgans are involved.
Generally speaking, the optimal beam configuration

eeds to balance the single beam angular ranking and the
eam interplay. The former favors placing beams at the
eak positions of the BEVD score function, whereas the
atter prefers a beam configuration with the beams away
rom each other. Although the two factors are not always
onflicting with each other, the beams other than the one
laced at the highest peak often need to be moved away for
EVD score peaks to separate the beams. We admit that

here exists a certain uncertainty in the placements of these
eams. However, the uncertainty in this process is far less
hen compared with the situation where no BEVD infor-
ation is available. In other words, the introduction of

ngular score function significantly reduces the size of the
eam configuration search space and enables us to quickly
btain a clinically sensible plan. The results of this study
emonstrate the effectiveness of a newly developed algo-
ithm that incorporates the volumetric information of the
nvolved organs. Further investigation into this technique
hould be performed to investigate other types of clinical
ases and to develop a full beam orientation optimization
ethod to take advantage of the a priori knowledge about

he angular search space as derived from the BEVD score

valuation (21). o
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Abstract. A multiscale image registration technique is presented for the reg-
istration of medical images that contain significant levels of noise. An overview
of the medical image registration problem is presented, and various registration
techniques are discussed. Experiments using mean squares, normalized corre-
lation, and mutual information optimal linear registration are presented that
determine the noise levels at which registration using these techniques fails.
Further experiments in which classical denoising algorithms are applied prior
to registration are presented, and it is shown that registration fails in this case
for significantly high levels of noise, as well. The hierarchical multiscale image
decomposition of E. Tadmor, S. Nezzar, and L. Vese [20] is presented, and
accurate registration of noisy images is achieved by obtaining a hierarchical
multiscale decomposition of the images and registering the resulting compo-
nents. This approach enables successful registration of images that contain
noise levels well beyond the level at which ordinary optimal linear registration
fails. Image registration experiments demonstrate the accuracy and efficiency
of the multiscale registration technique, and for all noise levels, the multi-
scale technique is as accurate as or more accurate than ordinary registration
techniques.

1. Introduction. Often in image processing, images must be spatially aligned to
allow practitioners to perform quantitative analyses of the images. The process
of aligning images taken, for example, at different times, from different imaging
devices, or from different perspectives, is called image registration. More precisely,
image registration is the process of determining the optimal spatial transformation
that maps one image to another. Typically, two images are taken as input, and
the registration process is then the optimization problem which determines the
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geometric mapping that brings one image into spatial alignment with the other
image. In practice, the particular type of transformation as well as the notion of
optimal will depend on the specific application.

Examples of applications in which image registration is particularly important
include astro- and geophysics, computer vision, remote sensing, and medicine. In
this paper, we will focus on medical image registration. Image registration plays an
important role in the analysis of medical images. For example, images taken from
different sensors often contain complementary information. By bringing the two
images into alignment so that anatomical features of one modality can be detected
in the other modality, the information from the different modalities can be com-
bined. In neurosurgery, for example, tumors are typically identified and diagnosed
using magnetic resonance images (MRI), but stereotaxy technology (the use of sur-
gical instruments to reach specified points) generally uses computed tomography
(CT) images. Registration of these modalities allows the transfer of coordinates
of tumors from the MRI images to the CT images. See [14] for a discussion of
the applications of multimodality imaging to problems in neurosurgery. As an-
other example, medical image data acquired prior to diagnosis can be compared
with data acquired during or after treatment to determine the effectiveness of the
treatment. To compare images taken at different times, however, the images must
first be brought into spatial alignment so that actual differences in the data can be
distinguished from differences that result from the image acquisition process.

In the context of medical imaging, the goal of the registration process is to remove
artificial differences in the images introduced by patient movement, differences in
imaging devices, etc., but at the same time, to retain real differences due to actual
variations of the objects. Medical images, however, often contain significant levels
of noise due to instrumentation imperfections, data acquisition techniques, image
reconstruction methods, transmission and/or compression errors, and other factors.
Although numerous successful image registration techniques have been published,
we will see that ordinary image registration algorithms can fail to produce mean-
ingful results when one or both of the images to be registered contains significant
levels of noise.

Since noise is generally present in digital images, image denoising is a funda-
mental problem in image processing. Indeed, many approaches to image denoising
have been presented. Thus a simple solution to the problem of image registra-
tion in the presence of noise would be to first apply a denoising algorithm to the
noisy image(s), and then use existing image registration techniques to register the
denoised images. However, common denoising algorithms, most notably spatial fil-
tering algorithms, have the disadvantage that while they are successful in removing
noise, they often remove edges as well. Additionally, most denoising procedures
require a priori knowledge of the noise level, variance, and/or model, information
not typically known in practice. For these and other reasons, we will demonstrate
that ordinary image registration of noisy images fails to produce acceptable results
even when classical denoising algorithms are applied to the noisy images prior to
registration (for significantly high levels of noise). Moreover, even more advanced
denoising techniques such as anisotropic diffusion (which was designed to remove
noise while preserving edges) will be shown to fail to register noisy images. Thus,
we seek a technique that enables successful image registration when one or both of
the images to be registered is noisy.
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Generally, we would like to consider an image f consisting of coarse and fine
scales. The general shape and main features of an image are considered the coarse
scales, and details and textures, such as noise, are the fine scales of the image.
Separating the coarse and fine scales of an image, therefore, is an effective tool in
denoising. Indeed, several denoising algorithms have been proposed using separa-
tion of the coarse and fine scales of an image, most notably [19], [18], [11], and [20].
The method presented in [20] presents a multiscale technique in which an image
f is decomposed in a hierarchical expansion f ∼ Σjuj , where the uj (called the
components of f relative to the decomposition) resolve edges of f with increasing
scales. More precisely, for small k, the sum Σk

j uj is a coarse representation of the
image f , and as k increases, the sum captures more and more detail (and hence,
noise) of the image.

In this paper, we present a multiscale image registration technique based on the
multiscale decomposition of [20] that is particularly effective when one or both of
the images to be registered contains significant levels of noise. Since the hierarchi-
cal expansion f ∼ Σjuj decomposes the image f into components which contain
increasingly fine scales, we expect a component-wise registration algorithm to pro-
duce accurate results for noisy images. That is, given a noisy image f , for small
values of k, the component Σk

j uj retains the general shape of the image f while
removing the details and noise of the image. Thus, if we wish to register the im-
age f with another image, say g, we expect that registration of the components
Σk

j uj with g will provide an accurate estimation of the actual transformation that
brings the two images into spatial alignment with one another, for sufficiently small
values of k. Similarly, if both f and g are noisy, we expect decomposing both im-
ages and performing component-wise registrations should accurately estimate the
optimal transformation. We will demonstrate that multiscale image registration
enables successful image registration for images that contain levels of noise that are
significantly higher than the levels at which ordinary registration fails.

This paper is organized in the following way. In Section 2, we discuss the image
registration problem and review standard image registration techniques. In Sec-
tion 3, we present the problem of image registration in the presence of noise, and
illustrate the failure of current techniques when one or both of the images to be
registered contains high levels of noise. In Section 4, we briefly discuss classical
and modern denoising techniques, and illustrate the failure of ordinary image reg-
istration of noisy images even when the images are denoised prior to registration.
In Section 5, we review the multiscale image decomposition of [20], and illustrate
the results of the hierarchical multiscale decomposition obtained upon applying the
algorithm to noisy images. In Section 6, we present image registration techniques
based upon the multiscale decomposition described in Section 5, and in Section 7,
we present the results of our multiscale image registration experiments.

2. The registration problem. Given a fixed and moving image, the registration
problem is the process of finding an optimal transformation that brings the moving
image into spatial alignment with the fixed image. While this problem is easy to
state, it is difficult to solve. The main source of difficulty is that the problem is ill-
posed, which means, for example, that the problem may not have a unique solution.
Additionally, the notion of optimality may vary for each application: for example,
some applications may require consideration only of rigid transformations, while
other applications require non-rigid transformations. Finally, computation time
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and data storage constraints place limitations on the complexity of models that can
be used for describing the problem. This following discussion of image registration
follows the presentation in [12].

2.1. The mathematical setting. A two-dimensional gray-scale image f is a map-
ping which assigns to every point x ∈ Ω ⊂ R2 a gray value f(x) (called the intensity
value of the image at the point x). We will consider images as elements of the space
L2(R2). Color images can be defined, for example, in terms of vector-valued func-
tions f = (f1, f2, f3) representing the RGB-color scales. For the medical imaging
applications that we are interested in, images are in fact given in terms of discrete
data, and the function f must be obtained by interpolation. We will not discuss
this construction here, but we will assume that an interpolation method has been
chosen.

Image registration is necessary, for example, for two images of the same object
that are not spatially aligned. This occurs when the images are taken at different
times, from different perspectives, or from different imaging devices. The basic
input data to the registration process are two images: one is defined as the fixed
image f(x) and the other as the moving image m(x). The goal is then to find a
transformation φ such that the fixed image f(x) and the deformed moving image
mφ(x) := m(φ(x)) are similar. To solve this problem in a mathematical way, the
term similar needs to be defined appropriately. For example, if the images to
be registered are taken from different devices, there may not be a correspondence
between the intensities f(x) and mφ(x) for an optimal φ. Additionally, we may
consider measures of similarity between the images which are not related to the
intensities. Thus, the registration problem necessarily involves a discussion of the
distance measures, or metrics, used to compare images. The general problem can
then be stated as follows.

Given a distance measure D : (L2(R2))2 → R and two images f(x),m(x) ∈
L2(R2), the solution φ of the registration problem is given by the following mini-
mization problem:

φ = argmin
ψ:R2→R2

D(f, mψ). (1)

In many applications, the set of allowable transformations to be considered in
the minimization problem (1) is restricted to a strict subset of the set of all maps ψ :
R2 → R2. For example, we may require the transformation φ to be smooth, or we
may impose specific parametric requirements, such as requiring the transformation
to be rigid, affine, polynomial, etc.

2.2. Landmark-based registration. Landmark-based registration is an image
registration technique based on a finite set of image features. The problem is to
determine the transformation such that for a finite set of features, any feature of
the moving image is mapped onto the corresponding features of the fixed image.
More precisely, let F (f, j) and F (m, j), j = 1, . . . , m be given features of the fixed
and moving images, respectively. The solution φ of the registration problem is then
a map φ : R2 → R2 such that

F (f, j) = φ(F (m, j)), j = 1, . . . m. (2)
For a more general notion of landmark-based registration, we define the following

distance measure:
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DLM (φ) :=
m∑

j=1

||F (f, j)− φ(F (m, j)||2l , (3)

where || · ||l denotes a norm on the landmark, or feature, space. For example, if
the features are locations of points, then || · ||l = || · ||R2 . We can then restate (2)
as the minimization problem in which the solution φ : R2 → R2 of the registration
problem is given by:

φ = argmin
ψ:R2→R2

DLM (ψ). (4)

To solve this minimization problem, the transformation either is chosen to be an
element of an n-dimensional space spanned, for example, by polynomials, splines,
or wavelets, or it is required to be smooth in some sense. In the first case, the
features to be mapped are the locations of a number of user-supplied landmarks.
Let χk, k = 1, . . . n be the basis functions of the space. Then the minimization of

DLM (φ) :=
m∑

j=1

||F (f, j)− φ(F (m, j)||2l

can be obtained upon expanding φ = (φ1, φ2) in terms of the basis functions χk

and solving the resulting least squares problems.
In the case in which we require the transformation φ to be smooth, we introduce

a functional which imposes smoothness restrictions on the transformation. That is,
we look for a transformation φ which interpolates the features F (f, j) and F (m, j),
and which is smooth in some sense. Such a transformation is called a minimal norm
solution, and it turns out (see [8]) that the solution can be expressed in terms of
radial basis functions.

Landmark-based registration is simple to implement, and the numerical solution
requires only the solution of a linear system of equations. However, the main draw-
back of the landmark-based approach is that the registration process depends on
the location of the landmarks. As the detection and mathematical characteriza-
tion of landmarks (for example, anatomical landmarks in medical images) is not
fully automated, the landmarks must be user-supplied, and this can be a time-
consuming and difficult process, even for a medical expert; see, for example, [17].
Additionally, landmark-based registration does not always results in a physically
meaningful registration. See [12, p. 44], for a simple example of a situation in
which landmark-based registration fails to produce meaningful results.

2.3. Principal-axes-based registration. Principal-axes image registration is based
on the idea of landmark-based registration, but it uses features that can be automat-
ically detected. These features are constructed as follows. For an image f : R2 → R,
and a function g : R2 → R, we define the expectation value of g with respect to f
by

Ef (g) :=

∫
R2 g(x)f(x) dx∫
R2 g(x) dx

. (5)

If u : R2 → Rm×n, we set Ef (u) := Ef [uj,k] ∈ Rm×n. The center of an image f is
defined by

Cf := Ef [x] ∈ R2, (6)
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and the covariance by

Covf := Ef [(x− Cf )(x− Cf )T ] ∈ R2×2. (7)

Given fixed and moving images, f(x) and m(x), the centers cf and cm and
eigendecompositions of the covariance matrices Covf and Covm are used as the
features Fi, and the registration problem is to compute φ : R2 → R2 such that
Fi(m(φ)) = Fi(f) for the features Fi.

This method is described in detail in [1]. The principal-axes method of image
registration has the advantages that it is computationally fast and simple and re-
quires few registration parameters, but has the disadvantages that it is not suitable
for images of multiple modalities and that the solutions may be ambiguous. In par-
ticular, the principal-axes-based method cannot distinguish between images with
the same center and covariance, even though images with very different structure
and orientation may have the same center and/or covariance.

2.4. Optimal parametric registration. An alternative approach to registration
is to use methods that are based on the minimization (or maximization) of some
distance measure, or metric, D. The transformation φ is restricted to some param-
eterized space, and the registration can be obtained by minimizing (or maximizing)
the distance D over the parameterized space. In particular, we will discuss metrics
based on intensity, correlation, and mutual information. Given a metric D, a fixed
image f , and a moving image m, optimal parametric registration is the problem of
finding a transformation φ in some pre-specified parameterizable space such that
D(f, m(φ)) is minimized (or maximized in certain cases). Examples of commonly
used parameterizable spaces in image registration are polynomial and spline spaces.
We will primarily be interested in rigid and affine linear transformations. An affine
linear map is a map of the form φ(x) = Ax + b, A ∈ R2×2, detA > 0, b ∈ R2.
Such a map allows rotations, translations, scales, and shears of the coordinates. A
translation (or rigid) transformation is a special case of an affine transformation
which allows only rotations and translations of the coordinates, and in this case,
the matrix A is required to be orthogonal with determinant 1. Optimal parametric
registration is probably the most commonly used image registration technique.

To minimize D(f, m(φ)), we must choose an optimization technique. That is, an
optimal parametric registration technique is described by a metric to be minimized
(or maximized) and an optimizer which controls the minimization (or maximiza-
tion). The implementation of the registration algorithm works in the following
way: at each iteration, the distance D between the two images is computed. An
affine transformation is then applied to the moving image, and the distance between
the images is recomputed. In theory, this process continues until the distance is
minimized (or maximized), though in practice there is some stopping criterion.

At each stage, the optimizer determines the parameters of the transformation
that will be applied to the moving image. Examples of commonly used optimiz-
ers include gradient descent and regular step gradient descent. Gradient descent
optimization advances the parameters of the transformation in the direction of the
gradient, where the step size is governed by a user-specified learning rate. Regular
step gradient descent optimization advances the parameters of the transformation
in the direction of the gradient where a bipartition scheme is used to compute the
step size.
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2.4.1. The mean squares metric. The mean squares metric computes the mean-
squared pixel-wise difference in intensity between two images f and m:

MS(f, m) :=
1
N

N∑

i=1

(fi −mi)2, (8)

where N is the total number of pixels considered, fi is the ith pixel of image f , and
mi is the ith pixel of image m. Note that the optimum value of the mean squares
metric is 0, and poor matches between the images f and m result in large values of
MS(f,m). This metric has the advantage that it is computationally simple. It is
based on the assumption that pixels in one image should have the same intensity
as (spatially) corresponding pixels in the second image. Thus, the mean squares
metric is restricted in practice to images of the same modality.

2.4.2. The normalized correlation metric. The normalized correlation metric com-
putes pixel-wise cross-correlation and normalizes it by the square root of the auto-
correlation function:

NC(f, m) := −

N∑
i=1

(fi ·mi)
√

N∑
i=1

f2
i ·

N∑
i=1

m2
i

, (9)

where N , fi, and mi are as defined for the mean squares metric. The negative
sign in (9) causes the optimum value of the metric to occur when the minimum is
reached. Thus the optimal value of the normalized correlation metric is -1. As with
the mean squares metric, the normalized correlation metric is restricted to images
of the same modality.

2.4.3. The mutual information metric. Mutual information is an information-theoretic
approach to image registration that was proposed independently by Viola and Wells
[22] and Collignon et al. [4] in 1995. The idea is that mutual information computes
the amount of information that one random variable (here, image intensity) gives
about another random variable (here, intensity values of another image). More
precisely, given a fixed image f(x) and a moving image m(x), we wish to compute
the transformation φ which maximizes the mutual information; i.e.,

φ = arg max
ψ

I(f(x),m(φ(x))). (10)

Maximization of the mutual information criterion assumes that the statistical de-
pendence between corresponding image intensity values is maximized when the
images are geometrically aligned.

The mutual information I(f(x),m(φ(x)) is defined in terms of entropy, where
we consider x as a random variable over coordinate locations in the coordinate
system of the fixed image. Let h(·) denote the entropy of a random variable:
h(x) := − ∫

p(x) ln p(x) dx, where p(x) is the probability density function of the
random variable x. Note that it is not clear how to construct p(x); we will discuss
methods for estimating the probability densities. The joint entropy of two random
variables x and y is given by h(x, y) = − ∫

p(x, y) ln p(x, y) dx dx, where p(x, y) is
the joint probability density function of the random variables x and y. Entropy can
be considered as a measure of the uncertainty or complexity of a random variable.
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If x and y are independent, then p(x, y) = p(x)p(y), so h(x, y) = h(x) + h(y).
However, if there is any dependency (as would be the case if x and y are intensity
values of images of the same object), then h(x, y) < h(x) + h(y). The difference is
defined to be mutual information:

I(f(x),m(φ(x))) = h(f(x)) + h(m(φ(x))− h(f(x),m(φ(x))). (11)

The terms in (11) can be interpreted in the following way. The first term,
h(f(x)), is the entropy of the fixed image and is independent of the transformation
φ. The second term, h(m(φ(x))), is the entropy of m(φ(x)), so maximization of
mutual information encourages transformations φ for which m(φ(x) has a high level
of complexity or uncertainty. The third term−h(f(x),m(φ(x))) is the negative joint
entropy of f(x) and m(φ(x)), so maximization of mutual information is related to
minimization of the joint entropy of f(x) and m(φ(x)). A detailed overview of
mutual information based registration can be found in [16].

Mutual information has the following properties. Let u(x) and v(x) denote two
images.

1. I(u(x), v(x)) = I(v(x), u(x)). Mutual information is symmetric.
2. I(u(x), u(x)) = h(u(x)). The information an image contains about itself is

equal to the entropy of the image.
3. I(u(x), v(x)) ≤ h(u(x)) and I(u(x), v(x)) ≤ h(v(x)). The information that

the images contain about each other can not be greater than the information
contained in the individual images.

4. I(u(x), v(x)) ≥ 0.
5. I(u(x), v(x)) = 0 if and only if u(x) and v(x) are independent. If the images

u(x) and v(x) are independent, no information about one image is gained
when the other image is known.

The entropies in equation (11) are defined in terms of integrals over the prob-
ability densities associated with the images f(x) and m(x). However, in a typical
medical image registration problem, the probability densities are not directly ac-
cessible, and thus must be estimated from the image data. Parzen windowing,
described in [5] and used in [22], is a common technique for density estimation. In
this method, continuous density functions are constructed by a super-position of
kernel functions K(·) centered at the elements of a sample of intensities taken from
the image. The estimation of the probability density p(z) is thus given by

p(x) ∼= P ?(z) =
1

NS

∑

zj∈S

K(z − zj), (12)

where NS is the number of spatial samples in S and K is an appropriately chosen
kernel function. The kernel function K must be smooth, symmetric, have zero
mean, and unit mass. Examples of suitable candidates for K include the Gaussian
density and the Cauchy density. In [22], Viola and Wells use a Gaussian density
function with standard deviation σ to estimate the probability density functions.
The optimal value of σ depends on the particular images to be registered.

Upon estimating the probability densities using the Parzen windowing technique,
the entropy integral h(z) = − ∫

p(z) ln(p(z)) dz must be evaluated, for example, by
using a sample mean:
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h(z) ∼= − 1
NR

∑

zj∈R

ln(P ?(zj)), (13)

where R is a second sample of intensities taken from the image. That is, two
separate intensity samples S and R are taken from the image. The first is used to
estimate the probability density, and the second is used to approximate the entropy.

The main advantage of the mutual information measure is that was shown to be
generally applicable for multi-modality registration, whereas intensity-based mea-
sures are typically not applicable for multimodality registration. Mutual informa-
tion registration has been successfully used for a number of complex applications.
Most notably, mutual information has been shown to be highly accurate for MRI-
CT registration; see, for example, [9], [15], and [21].

2.5. Non-parametric image registration. All of the image registration tech-
niques that we have discussed so far have been based on certain parameters. For
example, either the transformation φ can be expanded in terms of basis functions
that span a specified finite-dimensional space, or the registration is controlled by
a specified set of external features. Non-parametric techniques do not restrict the
transformation to a parameterizable set. Given two images, a fixed image f(x) and
a moving image m(x), we seek a transformation φ such that m(φ(x)) is similar to
f(x) in a certain sense. Upon defining a suitable distance measure D, the registra-
tion problem is then to minimize the distance between m(φ(x)) and f(x). However,
a direct minimization is often not possible in the non-parametric case. The prob-
lem is ill-posed: small changes in the input data may lead to large changes in the
output. Additionally, the solution is not unique. Given these constraints, a stable
numerical implementation is often impossible. To circumvent these problems, a
regularizing, or smoothing, term S is introduced, and the registration problem be-
comes the minimization of the distance between m(φ(x)) and f(x) plus a smoothing
term S(φ). That is, the registration is based on a regularized minimization of the
distance between the images.

In the discussion of non-parametric image registration, the transformation φ :
R2 → R2 is split into the trivial identity part and the deformation or displacement
part u; i.e.,

φ(x) = x− u(x). (14)

Upon decomposing φ in this way, we have m(φ(x)) = m(x − u(x)) := mu(x).
Given a distance D and a smoother S, the elastic registration problem is then the
minimization of D(f(x),mu(x)) + αS(u), where α ∈ R is a positive regularizing
parameter.

The choice of smoother S typically depends on the particular application. Ex-
amples of non-parametric image registration techniques include elastic registration
[3], fluid registration [2], and diffusion registration [6]. Elastic registration uses
linear elasticity theory to model the deformation of an elastic body. In this case,
the regularizing term S(u) is the linearized elastic potential of the displacement u.
In fluid registration, the regularization is based on the linearized elastic potential
of the time derivative of u. Finally, diffusion registration uses a regularization that
is based on spatial derivatives of the displacement.

Remark. In this section, we presented a brief overview of the major image
registration techniques currently used in image registration. In practice, the best
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registration method for a given set of images will depend on the particular features
of the images themselves. However, numerous studies comparing the accuracy and
performance of different image registration techniques for various applications have
been presented. The most extensive of these is [24], which originally consisted of a
comparison of 16 methods but has since been substantially expanded.

3. Registration in the presence of noise. In this section, we study the effect of
noise on image registration, and we determine the approximate noise level at which
registration fails. This study is conducted on the brain proton density slice images
shown in Figure 1 below. The image on the right is the result of translating the
image on the left by 13 mm to the right in the X-direction and 17 mm downward
in the Y -direction. Let I denote the original image, and let T denote the translated
image.

Image I: Brain Proton Density Slice Translated Image T

Figure 1. Original image I and translated image T .

Initially, we will consider the registration problem in which one of the images
(here, the fixed image) is noisy. We will add increasing levels of noise to the image
I and register the non-noisy translated image T with the noisy images. Our goal
is to determine the approximate noise levels at which various image registration
techniques fail, and to develop an algorithm that will enable registration beyond
these levels. Since we know the exact transformation that brings T into spatial
alignment with I, we can effectively evaluate and compare the accuracy of vari-
ous registration techniques. We will demonstrate that our multiscale registration
technique enables accurate registration of the translated image T with images that
contain significant levels of noise. Eventually, we will also apply our techniques to
the case in which both the fixed and the moving images contain high levels of noise.
Before we present these results, we discuss the notion of noise in some detail.

Remark. In this paper we present the results only for registration experiments
using the images I and T shown in Figure 1. We have performed numerous ex-
periments using other images, and we obtained results similar to those presented in
this paper. For the sake of brevity, we limit the results presented in this paper to
the experiments using the images in Figure 1.

3.1. Noise. Digital images are often degraded by random noise. In imaging, the
term noise refers to random fluctuations in intensity values that occur during image
capture, transmission, or processing, and that may distort the information given by
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the image. Image noise is not part of the ideal signal and may be caused by a wide
range of sources, such as detector sensitivity, environmental radiation, transmission
errors, discretization effects, etc. Noise is generally classified as either independent
noise or noise which is dependent on the image data.

Independent noise can often be described by an additive noise model, in which
the observed image f(x) is the sum of the true image s(x) and the noise n(x):

f(x) = s(x) + n(x). (15)

Within this framework of additive noise, the noise n(x) is commonly modeled by
Gaussian noise of mean m and variance v. A multiplicative noise model describes
noise that is dependent on the image data. This is often referred to as speckle noise:

f(x) = s(x) + s(x)n(x) = s(x)(1 + n(x)). (16)

In this case, n(x) is uniformly distributed random noise with mean m and variance
v. Impulse noise, or salt-and-pepper noise, is noise that resembles salt and pepper
granules randomly distributed over the image. Impulse noise is typically defined
by the following model. We let s(x) denote the actual image, and f(x) denote the
observed image. Then

f(x) =

{
s(x), with probability 1− δ,

η(x), with probability δ,
(17)

where η(x) is an identically distributed, independent random process. With this
model, an arbitrary pixel x ∈ Ω ⊂ R2 is affected by noise with probability δ,
and not affected with probability 1 − δ. We will refer to δ as the impulse noise
density, as adding impulse noise of density δ to an image f(x) affects approximately
δ · size(f) pixels. The random process η(x) is typically such that the corrupted
pixels are either set to the maximum value, have single bits flipped over, or are set
alternatively to zero or to the maximum value. This last case results in a salt-and-
pepper appearance. Note that unaffected pixels always remain unchanged.

In Figure 2, we add additive Gaussian noise of mean 0 and variance 0.2, multi-
plicative speckle noise of mean 0 and variance 0.2, and impulse noise of density 0.2
to the brain proton density slice image I.

Additive 
 Gaussian noise

Multiplicative
speckle noise Impulse noise

Figure 2. An illustration of the addition of various types of noise
to the image I.
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In this paper, we will study the problem of image registration in the presence of
high levels of impulse noise. We will determine the impulse noise density level at
which ordinary registration methods fail, and we will present a multiscale registra-
tion algorithm that enables accurate registration for noise levels higher than those
at which ordinary methods fail. To study the effect of varying noise densities on
the registration process, we add impulse noise of increasing densities δ to the brain
proton density slice image I, and register the (non-noisy) translated image T with
the noisy images. Let Iδ denote the image I with added impulse noise of density δ.
In Figure 3, we illustrate the noisy images Iδ for increasing values of δ.

δ=0.10 δ=0.30 δ=0.50 δ=0.70

Figure 3. An illustration of adding impulse noise of increasing
densities δ to the image I.

Remark. Although in this paper we present the results of image registration ex-
periments using only impulse noise, we have also conducted numerous experiments
using other types of noise, including additive Gaussian noise and speckle noise. The
results obtained with all other types of noise are similar.

3.2. Registration results. For increasing noise densities δ, we register T with
Iδ using various registration methods. Recall that the image T is the result of
translating the original image I 13 units in X and 17 units in Y , and that Iδ is
the result of adding uniform impulse noise of density δ to the image I. Since T
is a rigid transformation of I, we will restrict the registration process to linear
transformations; i.e., we will consider optimal linear registrations. The optimal
transformation φ produced by the optimal linear registration process will consist of
two parameters, namely X- and Y -translation values. We will let φX and φY denote
the X- and Y -translation parameters, respectively, of the optimal transformation
φ. For comparison purposes, we will perform the optimal linear registration using
the mean squares, normalized correlation, and mutual information metrics.

We use the following parameters for the registration algorithms. For the mean
squares and normalized correlation registration algorithms, we use the regular step
gradient descent optimizer. Due to the stochastic nature of the metric computation
in the mutual information algorithm, the regular step gradient descent optimizer
does not work well in the case of mutual information. Instead, we use the gradient
descent optimizer with a user-specified learning rate of 20.0. See [7] for a detailed
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Table 1. The results obtained upon registering the translated im-
age T with the noisy image Iδ, where δ is the impulse noise density;
φX and φY denote the X- and Y -translation values of the optimal
transformation φ produced by the registration algorithm, and n is
the number of iterations until convergence. The actual translation
values are 13 units in X and 17 units in Y .

Mean
Squares

Normalized
Correlation

Mutual
Information

δ φX φY n φX φY n φX φY n
0.00 12.99 17.00 18 13.01 17.00 18 12.75 17.03 200
0.10 12.99 17.01 28 12.99 17.01 20 12.83 16.88 200
0.20 13.03 16.98 17 13.04 16.98 19 12.98 16.64 200
0.30 12.97 17.03 28 13.02 17.02 11 13.02 17.02 200
0.40 18.89 7.16 15 8.05 1.30 13 11.08 9.72 200
0.50 2.16 7.06 19 9.09 2.18 8 9.72 7.12 200
0.60 29.81 3.19 40 4.08 0.24 7 4.57 5.17 200
0.70 2.08 1.14 13 3.11 2.13 12 3.08 2.86 200

discussion of these parameters. Finally, we set the maximum number of iterations
for each algorithm to 200. As we shall see, mean squares and normalized correlation
registrations typically converge very quickly to the optimal value. Mutual infor-
mation, on the other hand, often does not actually reach the true optimal solution
but instead oscillates within one or two pixels of the optimal solution (generally
after 100-150 iterations). By reducing the learning rate, we can increase the likeli-
hood of convergence, but this increases the computation time significantly without
improving the accuracy of the solution.

For each of these three registration algorithms, and for each δ we record the X-
and Y -translation parameters, denoted by φX and φY , respectively, of the optimal
transformation φ produced by the registration process. We also record the number
of iterations n until convergence. The results are shown in Table 1. Recall that the
actual translation values are 13 units in X and 17 units in Y . We also record the
number of iterations until convergence, which we denote by n.

The results presented in Table 1 indicate that optimal linear registration in the
presence of impulse noise fails when the impulse noise density in the fixed image
reaches approximately 0.40, regardless of the metric used.

4. Denoising.

4.1. Denoising techniques. In this section, we discuss various denoising tech-
niques. Image denoising is a fundamental problem in image processing, and there
has been much research and progress on the subject. As our primary interest is not
denoising but the problem of image registration of noisy images, we do not focus on
the general problem of image denoising. Instead, we present a few of the most com-
mon and computationally simple denoising techniques. We will then apply these
techniques to one of our noisy images and study the effect of denoising on the image
registration techniques. In particular, in Section 3, we saw that ordinary optimal
linear registration of noisy images failed when the impulse noise density was greater
than 0.40. Also in this section, we shall determine whether or not denoising prior
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to registration enables successful registration of noisy images for which registration
failed previously.

Spatial filtering is the traditional approach to removing noise from images. Spa-
tial filters use the assumption that noise occupies the higher regions of the frequency
spectrum, and thus they attenuate high spatial frequencies. Local spatial filtering
is a process in which the value of a given pixel in the filtered image is computed
by applying some algorithm to the pixel values in a neighborhood of the given
pixel. Typical implementations of spatial filters include mean filtering, median fil-
tering, and Gaussian smoothing. Mean filtering computes the value of each output
pixel by computing the statistical mean of the neighborhood of the corresponding
input pixel. Thus, applying a mean filter to a noisy image reduces the amount
of variation in gray-level intensity between pixels. Although this filter is compu-
tationally easy to implement, it is sensitive to the presence of outliers. Median
filtering, which computes the value of each output pixel by computing the statis-
tical median of the neighborhood of the corresponding input pixel, is more robust
to the presence of outliers, and is thus commonly used for removing impulse noise
from images. Convolution with a Gaussian kernel is another commonly used spatial
filtering technique. See [23] for an overview of classical spatial filtering techniques.

In Figure 4, we illustrate the effect of applying a mean, median, and Gaussian
convolution filter to the noisy image I0.70, the brain proton density slice image with
impulse noise of density 0.70. As is indicated in Figure 4, spatial filters smooth the
data to remove noise but also blur edges.

Gaussian filterMedian filterMean filter

Figure 4. The results of applying mean, median, and Gaussian
filters to the brain proton density slice image with impulse noise
of density 0.70.

More advanced denoising techniques that remove noise more effectively while
preserving edges include wavelet-based methods [10], total variation methods [19],
and PDE-based anisotropic diffusion methods [13], to name a few. Total variation
denoising reduces the total variation of the image, and thus removes noise, textures,
and fine-scale details while preserving edges. In Figure 5, we illustrate the effect
of applying these denoising techniques to the noisy image I0.70, the brain proton
density slice image with impulse noise of density 0.70.

4.2. Registration results after denoising. In this section, we register the trans-
lated image T with the denoised images illustrated in Figures 4 and 5. As in Section
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Total variation Anisotropic diffusion

Figure 5. The results of applying the Osher-Rudin total variation
and the Perona-Malik anisotropic diffusion denoising algorithms to
the brain proton density slice image with impulse noise of density
0.70.

Table 2. The results obtained upon registering the translated im-
age T with the denoised images obtained upon applying median,
mean, and Gaussian convolution filters to the noisy image I0.70.
φX and φY are the X- and Y -translation values of the optimal
transformation φ produced by the registration algorithm, n is the
number of iterations until convergence. The actual translation val-
ues are 13 units in X and 17 units in Y .

Mean
Squares

Normalized
Correlation

Mutual
Information

Denoising
Technique φX φY n φX φY n φX φY n

Mean
Filtering 31.83 1.15 46 16.88 1.11 29 5.39 5.30 200

Median
Filtering 18.87 1.26 31 2.38 6.90 34 4.39 4.06 200

Gaussian
Filtering 18.86 -0.76 31 2.19 0.25 11 7.38 7.37 200

Total
Variation 6.11 4.26 19 5.29 9.15 15 6.30 6.23 15

Anisotropic
Diffusion 2.10 1.13 11 4.09 6.22 10 10.62 14.77 200

3, we use mean squares, normalized correlation, and mutual information optimal
linear registration. For each registration method, we let φ denote the optimal trans-
formation produced by the registration algorithm, and we let φX and φY the X-
and Y -translation parameters of the optimal transformation φ. We denote by n the
number of iterations of each registration algorithm until convergence. We record
the results in Table 2. The moving image in each case is the translated image T ;
recall that the actual translation values are 13 in X and 17 in Y .
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The results presented in Table 2 indicate that the application of some of the
classical as well as modern denoising techniques prior to registration does not
enable successful registration of the noisy image I0.70 with the translated image
T . Although the more advanced denoising techniques such as total variation and
anisotropic diffusion result in translation values that are closer to the actual values,
particularly when mutual information registration is used, we conclude from Table
2 that denoising prior to registration does not produce accurate registration results
for images that contain high levels of noise.

5. Multiscale decomposition. In this section, we present the multiscale image
representation using hierarchical (BV,L2) decompositions of [20]. The multiscale
decomposition will provide a hierarchical expansion of an image that separates the
essential features of the image (such as large shapes and edges) from the fine scales of
the image (such as details and noise). The decomposition is hierarchical in the sense
that it will produce a series of expansions of the image that resolve increasingly finer
scales, and hence will include increasing levels of detail. We will eventually apply
the multiscale decomposition algorithm to the problem of image registration in the
presence of noise, and will demonstrate the accuracy of the multiscale registration
technique for noisy images such as those that were considered in Sections 3 and 4.

We will use the following mathematical spaces in the decomposition algorithm.
The space of functions of bounded variation, BV , is defined by

BV =
{

f

∣∣∣∣ ||f ||BV := sup
h 6=0

|h|−1||f(·+ h)− f(·)||L1 < ∞
}

.

We will also use the Sobolev space W−1,∞ with norm given by:

||f ||W−1,∞ := sup
g

[ ∫
f(x)g(x)
||g||W 1,1

dx

]
,

where ||g||W 1,1 := ||∇g||L1 .

5.1. The hierarchical decomposition. Define the J-functional J(f, λ) as fol-
lows:

J(f, λ) := inf
u+v=f

λ||v||2L2 + ||u||BV , (18)

where λ > 0 is a scaling parameter that separates the L2 and BV terms. This
functional J(f, λ) was introduced in the context of image processing by Rudin,
Osher, and Fatemi [19]. They suggested the following. Let [uλ, vλ] denote the
minimizer of J(f, λ). The BV component, uλ, captures the coarse features of the
image f , while the L2 component, vλ, captures the finer features of f such as
noise. This model is effective in denoising images while preserving edges, though it
requires prior knowledge of the noise scaling λ.

Tadmor, et al. propose in [20] an alternative point of view in which the mini-
mization of J(f, λ) is interpreted as a decomposition f = uλ+vλ, where uλ extracts
the edges of f and vλ extracts the textures of f . This interpretation depends on the
scale λ, since texture at scale λ consists of edges when viewed under a refined scale
(2λ, for example). We refer to vλ = f − uλ as the residual of the decomposition.
Upon decomposing f = uλ + vλ, we proceed to decompose vλ as follows:

vλ = u2λ + v2λ,
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where

[u2λ, v2λ] = arginf
u+v=vλ

J(vλ, 2λ).

Thus, we obtain a two-scale representation of f given by f ∼= uλ + u2λ, where now
v2λ = f − (uλ + u2λ) is the residual. Next we decompose v2λ and continue this
process, which results in the following hierarchical multiscale decomposition of f .
Starting with an initial scale λ = λ0, we obtain an initial decomposition of the
image f :

f = u0 + v0, [u0, v0] = arginf
u+v=f

J(f, λ0).

We then refine this decomposition to obtain

vj = uj+1 + vj+1, [uj+1, vj+1] = arginf
u+v=vj

J(vj , λ02j+1), j = 0, 1, . . .

After k steps of this process, we have:

f = u0 + v0 = u0 + u1 + v1 = u0 + u1 + u2 + v2 = . . . = u0 + u1 + . . . + uk + vk,

which is a multiscale image decomposition f ∼ u0+u1+ . . .+uk, with a residual vk.
As k increases, the uk components resolve edges with increasing scales λk = λ02k.

5.2. Implementation.

5.2.1. Initialization. As described in [20], the initial scale λ0 should capture the
smallest oscillatory scale in f , given by

1
2λ0

≤ ||f ||W−1,∞ ≤ 1
λ0

. (19)

However, in practice, we may not be able to determine the size of ||f ||W−1,∞ , so we
determine the initial choice of λ0 experimentally. Following [20], for the applications
presented in this paper, we will use λ0 = 0.01 and λj = λ02j .

5.2.2. Numerical discretization. We follow the numerical algorithm of [20] for the
construction of our hierarchical decomposition. In each step, we use finite-difference
discretization of the Euler-Lagrange equations associated with the J(vj , λj+1) to
obtain the next term, uj+1, in the decomposition of the image f . The Euler-
Lagrange equation associated with the minimization of the functional J(f, λ) given
in equation (18) is

uλ − 1
2λ

div
( ∇uλ

|∇uλ|
)

= f,

with the Neumann boundary conditions:

∂uλ

∂n

∣∣∣∣
∂Ω

= 0, (20)

where ∂Ω is the boundary of the domain Ω and n is the unit outward normal.

We thus obtain an expansion f ∼
k∑

j=0

uj , where the uj are constructed as ap-

proximate solutions of the recursive relation given by the following elliptic PDE:
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uj+1 − 1
2λj+1

div
( ∇uj+1

|∇uj+1|
)

= − 1
2λj

div
( ∇uj

∇|uj |
)

. (21)

Note that J(f, λ) contains a singularity when |∇uλ| = 0. To remove this singu-
larity, we replace J(f, λ) by the regularized functional

Jε(f, λ) := inf
u+v=f

{
λ||v||2L2 +

∫

Ω

√
ε2 + |∇u|2 dx dy

}
, (22)

and at each step, we find the minimizer uλ of Jε. The Euler-Lagrange equation for
the regularized Jε functional is

uλ − 1
2λ

div

(
∇uλ√

ε2 + |∇uλ|2

)
= f ∈ Ω,

with Neumann boundary conditions.
To numerically implement the method, we cover the domain Ω with a grid (xi :=

ih, yj := jh), and discretize the elliptic PDE of equation (21) as follows:.

ui,j = fi,j +
1
2λ

D−x

[
1√

ε2 + (D+xui,j)2 + (D0yui,j)2
D+xui,j

]

+
1
2λ

D−y

[
1√

ε2 + (D0xui,j)2 + (D+yui,j)2
D+yui,j

]

= fi,j +
1

2h2

[
ui+1,j − ui,j√

ε2 + (D+xui,j)2 + (D0yui,j)2

− ui,j − ui−1,j√
ε2 + (D−xui,j)2 + (D0yui−1,j)2

]

+
1

2h2

[
ui,j+1 − ui,j√

ε2 + (D0xui,j)2 + (D+yui,j)2

− ui,j − ui,j−1√
ε2 + (D0xui,j−1)2 + (D−yui,j)2

]
, (23)

where D+, D−, and D0 denote the forward, backward, and centered divided dif-
ferences, respectively. To solve the discrete regularized Euler-Lagrange equations
(24), we use the Gauss-Siedel iterative method to obtain:
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un+1
i,j = fi,j +

1
2h2


 un

i+1,j − un+1
i,j√

ε2 + (D+xun
i,j)2 + (D0yun

i,j)2

− un+1
i,j − un

i−1,j√
ε2 + (D−xun

i,j)2 + (D0yun
i−1,j)2




+
1

2h2


 un

i,j+1 − un+1
i,j√

ε2 + (D0xun
i,j)2 + (D+yun

i,j)2

− un+1
i,j − un

i,j−1√
ε2 + (D0xun

i,j−1)2 + (D−yun
i,j)2


 . (24)

To satisfy the Neumann boundary conditions (20), we first reflect f outside Ω
by adding grid lines on all sides of Ω. As the initial condition, we set u0

i,j = fi,j .
We iterate this numerical scheme for n = 0, 1, . . . N until ||un∞ − un∞−1|| is less
than some preassigned value so that un∞

i,j is an accurate approximation of the fixed
point steady solution uλ.

Finally, we denote the final solution uλ := {un∞
i,j }i,j . To obtain the hierarchical

multiscale decomposition, we reiterate this process, each time updating f and λ in
the following way:

fnew ← fcurrent − uλ,

λnew ← 2λcurrent. (25)

That is, at each step, we apply the J(fcurrent−uλ, 2λ) minimization to the residual
fcurrent − uλ of the previous step. Taking λj = λ02j , we obtain after k steps a
hierarchical multiscale decomposition f = uλ0 + uλ1 + . . . + uλk

+ vλk
, where we

write uλj
= uj . We call the uj , j = 1, 2, . . . , k the components of f and the vk the

residuals.

Example 1. Decomposition of a noisy image. We apply the hierarchical
multiscale decomposition of [20] as described in Section 5 to the noisy image I0.70

in Figure 3, using the following parameters: m = 12 hierarchical steps, λ0 = 0.01,
λj = λ02j, ε = 0.001, n = 10, and h = 1. In Figures 6 and 7, we illustrate
the components uλj and the residuals vλj for this decomposition. Note that in
each hierarchical step, an additional amount of texture is seen in the components.
Further, the noise is not seen in the first few components, while most of the texture
is kept, and the noise only reappears as the refined scales reach the same scales as
the noise itself. Our goal is to use this multiscale decomposition to register the noisy
image I0.70 with the translated image T .

6. Multiscale registration. Consider again the noisy images Iδ shown in Figure
3 with impulse noise of increasing densities δ. Recall that in Section 3, we demon-
strated that registration of the the translated image T with the noisy image Iδ
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Figure 6. Multiscale decomposition of the noisy image I0.70

shown in Figure 3.

failed when δ ≥ 0.40, regardless of the metric used in the optimal linear registra-
tion process. Moreover, registration using these classical methods failed even after
denoising the noisy image using various standard denoising techniques, as demon-
strated in Section 4. In this section, we present new methods for image registration
that allow for a successful registration of the translated image T with the noisy
images Iδ for values of the noise density δ significantly greater than the levels at
which classical registration and registration after denoising fail. These registration
techniques will be based on the hierarchical multiscale decomposition described in
Section 5.

Consider two images A and B, and suppose that we want to register image
B with image A. Suppose that one or both of the images contains a significant
amount of noise. If only one of the images is noisy, we assume that it is image
A. We propose the following multiscale registration method. First, we apply the
multiscale hierarchical decomposition to both images. Let m denote the number
of hierarchical steps used for the multiscale decompositions. For ease of notation,
given an image f , we let

Ck(f) :=
k∑

i=0

uλk
(26)
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Figure 7. The residuals of the multiscale decomposition of the
noisy image I0.70 shown in Figure 3.

denote the kth component of the image f , k = 0, 1, . . . ,m − 1, obtained as in
Section 5. Thus Ck(A) will denote the kth component of the image A, and Ck(B)
will denote the kth component of image B.

We will present two algorithms; in the first, we register image B with the com-
ponents of image A, and in the second, we register the components of image B with
the components of image A.

6.1. Algorithm I: One-node multiscale registration. In our first multiscale
registration algorithm, we register image B with the kth component of A, for k =
0, 1, . . . ,m− 1. This is illustrated by the schematic in Figure 8.

We refer to this algorithm as a one-node multiscale registration algorithm because
in each of the m registrations prescribed by the algorithm, the moving image is
always the image B. We only use the multiscale components of the fixed image A
for the one-node algorithm.

Let φk denote the optimal transformation produced by the registration algorithm
upon registering B with Ck(A), k = 0, 1, . . . , m−1. Recall that C0(A) contains only
the coarsest scales of the image A, and as k increases, Ck(A) contains increasing
levels of detail (and hence, noise) of the image A. Thus, we expect that registration
of image B with Ck(A) should give an improvement compared to ordinary registra-
tion for the first few values of k. As k increases, however, we expect that eventually
the component Ck(A) will become too noisy to give successful registration.

Upon determining the transformations φk with a suitable registration algorithm
(e.g., an optimal linear registration), we have several options for defining the optimal
transformation Φ that should bring the image B into spatial alignment with the
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φm−1

φ3

φ2

φ1

φ0

C3(A)

C2(A)

Moving Image Transformation Fixed Image

B

C0(A)

C1(A)

Cm−1(A)

Figure 8. This schematic represents a one-node multiscale image
registration algorithm in which we register the moving image B
with the kth component of the fixed image A, for k = 0, 1, . . . , m−1,
where m is the number of hierarchical steps used for the multiscale
decompositions.

image A. The first option would be to take into account the registration parameters
corresponding to the coarse scales only, i.e., the first few values of k, for which we
expect a more accurate registration. Upon determining the number of registrations
that we wish to take into account, we could then estimate Φ by averaging the
registration parameters corresponding to those coarse scale registrations. A second
option would be to define Φ as a weighted average of the φk; i.e.,

Φ :=
1
m

m−1∑

k=0

akφk, (27)

where the weights ak are appropriately chosen non-negative real numbers such that
Σak = m. For example, we could perform a statistical analysis on the registration
parameters corresponding to the φk, and use the mean and standard deviation
(or the mean and standard deviation of the first several values) to determine the
weights ak.

6.2. Algorithm II: Multi-node multiscale registration. In our second mul-
tiscale registration algorithm, we register the kth component of image B with the
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ψ0

ψ1

ψ3

ψm−1

ψ2

Cm−1(B)

C3(B)

C2(B)

C1(B)

C0(B)

Moving Image Transformation Fixed Image

C0(A)

C1(A)

C2(A)

C3(A)

Cm−1(A)

Figure 9. This schematic represents a multi-node multiscale im-
age registration algorithm in which we register the kth component
of the moving image B with the kth component of the fixed image
A, for k = 0, 1, . . . , m − 1, where m is the number of hierarchical
steps used for the multiscale decompositions.

kth component of image A, for k = 0, 1, 2, . . . m− 1, as illustrated by the schematic
in Figure 9.
We refer to this algorithm as a multi-node multiscale registration algorithm because
in each of the m registrations prescribed by the algorithm, we consider both the
components of the fixed image A and the components of the moving image B.

Let ψk denote the optimal transformation produced by the registration algorithm
upon registering Ck(B) with Ck(A), k = 0, 1, . . . ,m− 1. As before, we expect that
registration of Ck(B) with Ck(A) should give an improvement compared to ordinary
registration for the first few values of k. As k increases, however, we expect that
eventually the components Ck(A) and Ck(B) will become too noisy to register
successfully. Since this algorithm considers components of both images, we expect
that it will be particularly successful in the case in which both images are noisy.

As in the case of the one-node multiscale registration algorithm, we can define
the optimal transformation Ψ that should bring image B into spatial alignment
with image A either by taking into account only the first few registration results
corresponding to registration of the coarse scales, and averaging the registration pa-
rameters corresponding to these first few registrations, or by computing a weighted
average:
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Table 3. The registration results upon registering T with I0.70

using Algorithm I. Here, we use m = 12 hierarchical steps to de-
compose the noisy image, so we perform m = 12 registration sim-
ulations. The transformation parameters φX and φY are the X-
and Y -translation parameters of the optimal transformation φ pro-
duced by the registration algorithm. The actual translation values
are 13 in X and 17 in Y . The moving image in all simulations is
the translated image T .

Mean
Squares

Normalized
Correlation

Mutual
Information

Fixed Image φX φY n φX φY n φX φY n
I0.70 4.57 5.17 200 2.08 1.14 7 4.08 0.24 7
C0(I0.70) 12.65 16.36 200 3.08 1.11 12 3.11 0.17 9
C1(I0.70) 12.69 16.78 200 2.08 3.08 14 2.13 2.12 12
C2(I0.70) 12.56 16.79 200 2.11 3.08 14 2.14 3.11 15
C3(I0.70) 12.53 16.76 200 3.08 2.11 14 3.11 2.14 7
C4(I0.70) 12.48 16.76 200 24.88 1.16 36 18.86 1.18 30
C5(I0.70) 12.46 16.78 200 40.80 1.07 52 0.21 1.18 11
C6(I0.70) 12.43 16.80 200 28.86 0.15 46 27.84 2.19 42
C7(I0.70) 12.43 16.79 200 -2.87 4.11 15 0.18 3.14 12
C8(I0.70) 12.43 16.74 200 25.89 3.12 40 -1.84 4.12 14
C9(I0.70) 9.33 9.41 200 6.05 4.12 12 7.99 2.08 16
C10(I0.70) 8.44 8.32 200 -3.92 8.12 21 4.09 3.15 16
C11(I0.70) 6.96 6.46 200 8.97 6.13 13 3.65 1.17 27

Ψ :=
1
m

m−1∑

k=0

bkψk, (28)

where the weights bk are appropriately chosen non-negative real numbers such that
Σbk = m.

7. Examples of multiscale registration.

7.1. A noisy fixed image. In this section, we use the multiscale registration tech-
nique described in Section 6 to register the translated (non-noisy) image T with the
noisy image I0.70. Recall that I0.70 is the image obtained upon adding impulse noise
of density 0.70 to the brain proton density slice image I. As before, let Ck(I0.70) de-
note the kth component in the multiscale decomposition of I0.70, for k = 0, 1, . . . m,
obtained as in Section 6. We perform the multiscale decomposition using m = 12
hierarchical steps, λ0 = 0.01, and λj = λ02j . In Table 3, we present the results
of m = 12 registration simulations, obtained upon registering T with Ck(I0.70),
k = 0, 1, . . . , 11, using Algorithm I of Section 6.1. For each registration, we let φ
denote the optimal transformation produced by the registration algorithm, and we
let φX and φY the X- and Y -translation parameters of the optimal transformation
φ. The moving image in each registration is the translated image T . For reference,
we also include in the first line of Table 3 the parameters obtained using ordinary
registration.
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It is clear from the results presented in Table 3 that the results obtained us-
ing mean squares and normalized correlation methods are completely inaccurate.
Thus, the one-node multiscale algorithm did not produce meaningful results for
these metrics. For mutual information, however, the X and Y translation param-
eters are clustered around 12.5 units in X and 16.8 units in Y for k = 0, 1, . . . 8,
but then are significantly different for the remaining values of k. We expected
that the multiscale registration results would be an accurate approximation of the
actual transformation Φ for small values of k, but then would deviate as k be-
came sufficiently large, because as k becomes large, increasing scales of detail (and
hence, noise) appear in the component Ck. Thus, even without knowing the actual
values of the X- and Y -translations, it makes sense to take into account only the
parameters corresponding to the first 9 registrations (k = 0, 1, . . . 8). Averaging
the translation parameters for the first 9 registrations, we obtain ΦX = 12.52 and
ΦY = 16.73. Since the actual values are 13 in X and 17 in Y , we see that multi-
scale mutual information registration produced very accurate results in this case,
and indeed is a significant improvement compared to ordinary registration as well
as to classical and modern denoising followed by registration.

Next, we provide the results obtained with Algorithm II by registering the multi-
scale components of the translated image T with the multiscale components of the
noisy image I0.70. Let Ck(T ) and Ck(I0.70) denote the multiscale components of T
and I0.70, respectively, obtained through the multiscale decomposition presented in
Section 5. As before, we use m = 12 hierarchical steps, λ0 = 0.01, and λj = λ02j to
perform the decomposition. In Table 4, we present the results of m = 12 registra-
tion simulations, obtained upon registering Ck(T ) with Ck(I0.70), k = 0, 1, . . . , 11.
For each registration, we let ψ denote the optimal transformation produced by the
registration algorithm, and let ψX and ψY denote the X- and Y -translation param-
eters of the optimal transformation ψ. For reference, we also include in the first
line of Table 4 the parameters obtained using ordinary registration.

To estimate the transform parameters ΨX and ΨY , we note that for mutual
information, the translation parameters ψx and ψy are clustered together for the
first 9 registrations, and for mean squares and normalized correlation, the values
are clustered together for the first 2 registrations. Thus for mutual information we
determine Ψ by averaging the parameters corresponding to the first 9 registrations,
and for mean squares and normalized correlation, we average the first 2 values.
In Table 5, we present the X- and Y -translation values corresponding to these
averages.

Remark.Since the actual translation values are 13 in X and 17 in Y , we see
that the multinode multiscale registration of the translated image T with the noisy
image I0.70 produces very accurate results for each of the three optimal linear regis-
tration metrics considered here (mean squares, normalized correlation, and mutual
information). The main difference between the results obtained with Algorithm I
and Algorithm II is the accurate registration of the coarse scales obtained with Al-
gorithm II.

7.2. Noisy fixed and moving images. In this section, we consider the registra-
tion problem in which both the fixed and moving images are noisy. Consider the
noisy images I0.40 and T0.40, where T , as before, is the result of translating I 13
units in X and 17 units in Y , and Aδ denotes the image obtained by adding impulse
noise of density δ to the image A. The noisy images are shown in Figure 10.
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Table 4. The registration results obtained with Algorithm II.
Here we register the kth multiscale component Ck(T ) of the trans-
lated image T with the kth multiscale component Ck(I0.70) of the
noisy image I0.70 obtained via the multiscale decomposition dis-
cussed in Section 5. Here, we use m = 12 hierarchical steps to
decompose the noisy image, so we perform m = 12 registration
simulations. The transformation parameters ψX and ψY are the
X- and Y -translation parameters of the optimal transformation
ψ produced by the registration algorithm. The actual translation
values are 13 in X and 17 in Y .

Mean
Squares

Normalized
Correlation

Mutual
Information

Fixed and
Moving Images φX φY φX φY φX φY

I0.70 and T 4.57 5.18 2.08 1.14 4.08 0.24
C0(I0.70) and C0(T ) 12.69 16.66 12.29 17.72 12.96 17.08
C1(I0.70) and C1(T ) 12.67 16.87 13.70 17.75 12.99 17.67
C2(I0.70) and C2(T ) 12.59 16.86 20.77 5.20 16.84 4.31
C3(I0.70) and C3(T ) 12.55 16.82 3.19 0.31 4.20 4.23
C4(I0.70) and C4(T ) 12.52 16.83 2.20 2.24 26.74 5.18
C5(I0.70) and C5(T ) 12.51 16.84 31.65 2.23 14.90 6.27
C6(I0.70) and C6(T ) 12.49 16.87 30.69 6.16 19.87 4.29
C7(I0.70) and C7(T ) 12.48 16.85 33.64 3.16 29.64 3.32
C8(I0.70) and C8(T ) 12.53 16.71 28.81 3.22 1.26 1.29
C9(I0.70) and C9(T ) 9.26 9.36 2.13 3.13 17.93 3.21
C10(I0.70) and C10(T ) 8.80 8.61 2.12 3.12 32.63 3.14
C11(I0.70) and C11(T ) 6.95 6.34 34.74 2.10 4.13 5.08

Table 5. The translation parameters ΨX and ΨY obtained by
averaging the parameters corresponding to the coarse scale reg-
istrations. The actual translation values are 13 in X and 17 in
Y .

Mean
Squares

Normalized
Correlation

Mutual
Information

ΨX 12.56 12.99 12.98
ΨY 16.82 17.74 17.37

Before applying our multiscale registration algorithm, we attempt to register
T0.40 with I0.40 using the three registration methods mean squares, normalized
correlation, and mutual information. The results shown in Table 6 indicate that
registration of the noisy images fails, regardless of the metric used in the optimal
linear registration algorithm.

Since ordinary registration of the noisy images fails, we register the images using
Algorithm II, the multi-node multiscale registration technique. First, we perform
the multiscale decomposition discussed in Section 5 to both noisy images, again us-
ing m = 12 hierarchical steps, initial scale λ0 = 0.01, and λj = 2jλ0. Let Ck(I0.40)
and Ck(T0.40) denote the kth component in the multiscale decomposition of I0.40
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I
40

T
40

Figure 10. The original image I and translated image T with
impulse noise of density δ = 0.40

Table 6. The results of registering the noisy translated image
T0.40 with the noisy image I0.40, using three different metrics. The
actual translation values are 13 in X and 17 in Y .

Registration Method φX φY

Mean Squares 11.02 7.04
Normalized Correlation 3.05 0.99
Mutual Information 5.03 2.54

and T0.40, respectively. Since both images are noisy, we register the kth component
Ck(T0.40) with the kth component Ck(I0.40). For each registration simulation, de-
note by ψ the optimal transformation produced by the registration algorithm, and
denote by ψX and ψY the corresponding X- and Y -translation parameters of the
optimal transformation ψ. We present the results of this multiscale registration in
Table 7.

To estimate the transformation Ψ, for mutual information we average the pa-
rameters corresponding to registration of the first 7 scales. For mean squares, we
average the results of the first 2 registrations, and for normalized correlation, we
average the registration results from the first 4 registrations. In Table 8, we present
the X- and Y -translation values ΨX and ΨY .

Note that since the actual translation values are 13 in X and 17 in Y , our
multiscale registration technique provides accurate results in the case in which
both the fixed and moving images contain significant levels of noise.

Remarks.

1. For the sake of brevity, we presented only the multiscale registration results
for registration of images that contain levels of noise greater than the level at
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Table 7. The results of registering T0.40 with I0.40 using Algo-
rithm II. Here, we use m = 12 hierarchical steps to decompose the
noisy image, so we perform m = 12 registration simulations. The
actual translation values are 13 in X and 17 in Y .

Mean
Squares

Normalized
Correlation

Mutual
Information

Fixed
Image

Moving
Image φX φY φX φY φX φY

I0.40 T0.40 5.03 2.54 11.02 7.04 3.05 0.99
C0(I0.40) C0(T0.40) 13.06 16.92 13.05 16.92 13.05 16.92
C1(I0.40) C1(T0.40) 13.05 16.93 13.02 16.22 13.06 16.92
C2(I0.40) C2(T0.40) 13.03 16.93 8.11 5.29 13.02 16.27
C3(I0.40) C3(T0.40) 13.02 16.94 5.40 12.19 13.02 16.25
C4(I0.40) C4(T0.40) 13.02 16.94 2.20 8.00 2.23 5.09
C5(I0.40) C5(T0.40) 13.01 16.93 26.76 1.21 1.17 7.00
C6(I0.40) C6(T0.40) 12.99 16.81 23.83 4.11 1.22 2.17
C7(I0.40) C7(T0.40) 7.05 6.08 0.20 3.15 0.20 4.15
C8(I0.40) C8(T0.40) 6.78 5.05 6.04 2.09 6.04 6.05
C9(I0.40) C9(T0.40) 3.05 1.02 9.98 1.10 5.06 10.01
C10(I0.40) C10(T0.40) 12.20 14.01 -1.97 0.99 -3.93 3.04
C11(I0.40) C11(T0.40) 4.80 3.19 1.01 5.98 3.91 0.72

Table 8. The translation parameters ΨX and ΨY for registration
of T0.40 with I0.40 obtained by averaging the translation parameters
of the coarse scale registrations. The actual translation values are
13 in X and 17 in Y .

Mean
Squares

Normalized
Correlation

Mutual
Information

ΨX 13.03 13.03 13.04
ΨY 16.92 16.57 16.59

which ordinary registration methods fail. However, we also performed mul-
tiscale registration simulations for noise densities lower than those presented
here, and in all cases, the multiscale technique was either as accurate as or
more accurate than ordinary registration techniques.

2. The method of estimating the translation parameters in X and Y by averag-
ing the parameters corresponding to the coarse scale registrations is based on
determining the scales that should be taken into consideration. For the results
presented in this paper, as well as for all of the other simulations that we
studied, we found a drastic jump in the translation parameters such as that
between the eighth and ninth scales in the mutual information column of Table
4. In such cases, the natural choice is to average the parameters correspond-
ing to the coarse scales before the jump, and to exclude the remaining values;
indeed, in all cases considered for this study, we have found that estimating
the parameters in this way yields extremely accurate results. More generally,
we expect that for most problems of this type, there should be a noticeable jump
in the multiscale registration parameters, thus enabling a determination of the
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coarse scales that should be averaged. This jump occurs because once a certain
level of detail, and hence noise, appears in the scales, the registration process
fails. More specifically, the optimization of the registration metric does not
produce meaningful results if enough noise is present, and the registration pa-
rameters that result differ significantly from those that result from registration
of images in which less noise is present.

8. Summary. While there are many existing medical image registration tech-
niques, common approaches are shown to fail to give accurate results when one
or more of the images to be registered contains high levels of noise. Further, if the
noise level is significantly high, image registration can fail even when a denoising
algorithm is applied to the noisy images before registration. We have presented
an image registration technique based on the hierarchical multiscale decomposition
of [20] of the images to be registered. The multiscale decomposition of an image
results in a hierarchical representation that separates the coarse and fine scales of
the image. Upon obtaining the decomposition of one or both of the images to be
registered, we register the components of the moving image with the components of
the fixed image. Since the coarse scale components of an image contain the essen-
tial features and shapes of the image, registration of the coarse scale components
of the moving image with the coarse scale components of the fixed image provides
an accurate estimate of the actual transformation that brings the moving image
into spatial alignment with the fixed image. Using images in which the precise
transformation that maps one to the other is known, we have shown that the mul-
tiscale approach is indeed accurate for levels of noise much higher than the noise
levels at which ordinary optimal linear registration and denoising prior to ordinary
registration methods fail; moreover, for all levels of noise, the multiscale technique
either matches or outperforms ordinary registration techniques. Finally, we hope to
extend these techniques to other image registration problems in which ordinary reg-
istration techniques are not successful due to degradation or other factors present
in the images to be registered.
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Many image registration algorithms rely on the use of homologous control points on the two input
image sets to be registered. In reality, the interactive identification of the control points on both
images is tedious, difficult, and often a source of error. We propose a two-step algorithm to auto-
matically identify homologous regions that are used as a priori information during the image
registration procedure. First, a number of small control volumes having distinct anatomical features
are identified on the model image in a somewhat arbitrary fashion. Instead of attempting to find
their correspondences in the reference image through user interaction, in the proposed method, each
of the control regions is mapped to the corresponding part of the reference image by using an
automated image registration algorithm. A normalized cross-correlation �NCC� function or mutual
information was used as the auto-mapping metric and a limited memory Broyden-Fletcher-
Goldfarb-Shanno algorithm �L-BFGS� was employed to optimize the function to find the optimal
mapping. For rigid registration, the transformation parameters of the system are obtained by aver-
aging that derived from the individual control volumes. In our deformable calculation, the mapped
control volumes are treated as the nodes or control points with known positions on the two images.
If the number of control volumes is not enough to cover the whole image to be registered, addi-
tional nodes are placed on the model image and then located on the reference image in a manner
similar to the conventional BSpline deformable calculation. For deformable registration, the estab-
lished correspondence by the auto-mapped control volumes provides valuable guidance for the
registration calculation and greatly reduces the dimensionality of the problem. The performance of
the two-step registrations was applied to three rigid registration cases �two PET-CT registrations
and a brain MRI-CT registration� and one deformable registration of inhale and exhale phases of a
lung 4D CT. Algorithm convergence was confirmed by starting the registration calculations from a
large number of initial transformation parameters. An accuracy of �2 mm was achieved for both
deformable and rigid registration. The proposed image registration method greatly reduces the
complexity involved in the determination of homologous control points and allows us to minimize
the subjectivity and uncertainty associated with the current manual interactive approach. Patient
studies have indicated that the two-step registration technique is fast, reliable, and provides a
valuable tool to facilitate both rigid and nonrigid image registrations. © 2006 American Associa-
tion of Physicists in Medicine. �DOI: 10.1118/1.2184440�
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I. INTRODUCTION

Imaging is at the foundation of many clinical interventional
procedures and development of an effective image registra-
tion technique has been one of the most important research
areas in medical applications of imaging technology. Gener-
ally speaking, registration is to align two imaging data sets in
a common coordinate space by transforming the higher reso-
lution data set �the “model”� while keeping the other one �the
“reference”� fixed. Depending on the mathematical nature of
the transformation, image registration is divided into rigid
and deformable registrations. In rigid transformations, it is
assumed that the geometry of the object is identical in the
two input images and no distortion occurs in the image ac-
quisition process. When working in the “world coordinate”
in which the lengths in both images are measured in the same
scale, a rigid transformation consists of six degrees of free-

dom: three displacement parameters and three rotational pa-
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rameters. Deformable registration, on the other hand, is more
complicated and entails the modeling of voxel-dependent
distortion in addition to the translation and rotation.1–11

Clinically, the need for a robust image registration algorithm
to compare/fuse images representing the same structures im-
aged under different conditions or on different modalities is
ever increasing because of the extensive use of multi-
modality imaging and the emergence of new imaging tech-
niques and methods.

Computer-based rigid image registration has gained wide-
spread popularity in the last decade and is used in routine
clinical practice. In this approach, the matching of the two
input images is formulated into an optimization problem and
the best registration of the two images is obtained by itera-
tively comparing various possible matches until no better
registration can be found. The search for the optimal match

of the two input images is usually gauged by a ranking func-

11651165/15/$23.00 © 2006 Am. Assoc. Phys. Med.
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tion constructed based on some physical considerations. De-
pending on the nature of the input images, the formulation of
the problem can be highly complicated and the truly optimal
solution may not be readily attainable. To facilitate the com-
puter decision-making process, image preprocessing or user
interaction may be required, especially when dealing with a
deformable image registration. Along this line, a commonly
used strategy is to locate several homologous anatomic land-
mark pairs on the two input images, as it is generally true
that inclusion of prior system knowledge often leads to a
better matching. In order to accurately identify the control
points on both images, a prerequisite is that the user must
have a detailed understanding of the patient anatomy and the
characteristics of the two modalities. The point pairs are usu-
ally obtained interactively with the user repetitively explor-
ing the input image sets and each time trying to locate a
point in both of them. Due to the 3D nature, the process is
rather tedious and difficult to perform. Inaccuracy and sub-
jectivity exist in the resulting match due to the user depen-
dence in selecting the control points.

The purpose of this work is to develop a general method
to facilitate the selection of control points for both rigid and
deformable image registrations. Under an assumption that
sufficient common features exist in the two input studies in
most practical registration problems, the registration of two
images in our approach proceeds in two steps. First, a num-
ber of small control regions having distinct anatomical fea-
tures are identified on the model image in a more or less
arbitrary fashion. Instead of attempting to find the correspon-
dences of the regions in the reference image through the
judgment of the user, in the proposed method, each of the
control regions is mapped to the corresponding part of the
reference image by using an automated image registration
algorithm. The mapping of a control region is generally ef-
ficient and robust provided that sufficient information is in-
cluded in the volume. After the mapping, a conventional au-
tomated image registration algorithm utilizing the
predetermined control points can be employed to complete
the remaining image registration process. This new way of
image registration eliminates the need for the manual place-
ment of the homologous control points and allows us to reg-
ister the two images accurately and efficiently.

II. METHODS AND MATERIALS

A. Software platform

All calculations are implemented using an open-source
software toolkit named the Insight Toolkit �ITK�,12 which
consists of template-based codes for a large number of image
visualization, segmentation, and registration classes. The
programs contained in ITK are easily extendable, making it
an ideal platform for the development of image registration
methods. Concise and clear descriptions on the use of the

available subroutines are provided in the ITK manual.
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B. Selection of control regions on the model image

Image registration is a highly nontrivial optimization
problem and suboptimal or even nonoptimal solution may
result if it is done without a priori knowledge of the system.
A method for enhancing the success rate of the calculation is
to provide partial guidance to the optimization program by
introducing a number of homologous control points identi-
fied on the model and reference images at different spatial
locations. In general, the point pair should represent the same
anatomic location in the two data sets. While the method is
inherently efficient because it poses strong constraints on the
solution search process, a challenge here is that the spatial
arrangements of the reference and model points must be
brought into optimal agreement. This is often performed by a
skilled user and there exists considerable interperson varia-
tion in the identification of the control point pairs.

Different from the previous approaches, we replace each
control point on the model image by a small volume, coined
as control volume. A control volume is placed on a location
where deformation is negligible �e.g., in or nearby a bony
structure�. It is preferable that sufficient imaging feature/
information is contained within the volume so that its coun-
terpart in the reference image can be easily and uniquely
identified by computer. The underlying assumption here is
that the regions on a model image are generally not equiva-
lent and some regions can be more reliably mapped onto the
reference image than others. The use of a “rigid” control
region that possesses rich internal intensity pattern makes the
mapping of the region from model image to reference image
simple and unique. The determination of the size of the con-
trol region is generally a balance of a few factors. If the
volume is too small, there would be not enough structurally
unique features in the region to warrant an accurate mapping
of the region. On the other hand, it may be difficult to
specify a large control volume that meets the general selec-
tion criteria of the control volume when there is tissue defor-
mation. Typically, the volume is spherical or cubic shaped
with a dimension of 1–2 cm in the case of intramodality
registration, but, depending on the application, other shaped
volume or dimension should also be acceptable.

C. Mapping of control regions from the model image
to reference image

In Fig. 1 we show the flow charts of the new image reg-
istration scheme for rigid and deformable registrations. The
input to the software is the images to be registered: a model
image and a reference image, described by their intensity
distributions I��x� and I��x�, respectively. A virtue of the
new approach is that the control regions need to be identified
only on the model image in a fairly arbitrary fashion. The
correspondences of these regions on the reference image are
determined through the use of an automatic image registra-
tion algorithm. In a sense, the determination of control re-
gions here is a process of registration within a registration.
For intramodality registration, we use the normalized cross
correlation �NCC� of control regions between the model

points and the corresponding reference points,
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as the criterion for assessing the goodness of the mapping of
the control regions. In Eq. �1�, i and j are the voxel indices
within a control region � in the model image, I��xi� is the
intensity of the voxel at xi on the model image �, and I��Txi�
is the intensity of the reference image � where the voxel xi is
mapped. We note that other types of metrics should be
equally applicable to deal with the problem here. For inter-
modality registration such as CT and MRI, the commonly
used mutual information metric can be used as the matching
criterion of the control regions.

The above mapping directly uses the value of all pixels
within a control volume as the information feature with the
assumptions that both data sets show the control volume
similarly and that the control volume pair is related by a rigid
transformation. In intramodality registration, an idealized
situation is that the intensity of each voxel in a control region
in the model image differs from its corresponding reference
pixel by a factor. In practice, the two data sets may be af-

fected by noise, sampling, and clinical or experimental situ-
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ation. The mapping of a control volume is considered opti-
mal if the above NCC function is minimal or mutual
information is maximal. Numerous optimization algorithms
can be employed to minimize/maximize the matching crite-
ria. In our calculation, the control volumes are mapped se-
quentially and independently. For a chosen control region, an
iterative optimization algorithm is used to update the six
transformation parameters until no further improvement can
be achieved. The iterative calculation is outlined in the next
section. After one volume pair is finished, the calculation
moves to the next control region and the iterative calculation
is repeated.

D. Optimization of the NCC function

The NCC given in Eq. �1� or the mutual information met-
ric for a given control volume is a function of its transla-
tional and rotational parameters. For each control volume,
the optimization of the function with respect to these param-
eters is done by using the L-BFGS algorithm.13 The details
of this algorithm have been presented11,14,15 and will not be

FIG. 1. Flow chart of the proposed calculation proce-
dure for rigid �a� and deformable registration �b�. The
control volumes are selected by the user only on the
model image. A rigid registration algorithm automati-
cally maps the selected control volumes to their corre-
sponding locations on the reference image.
repeated here. During the mapping of a control volume, the
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iterative calculation based on the LBFGS algorithm contin-
ues until a preset maximum number of iterations �typically,
100 iterations� is reached.

E. Rigid and BSpline deformable registration with
incorporation of the mapped control volume
information

For rigid registration, a single control volume is, in prin-
ciple, sufficient to derive the translational and rotational pa-
rameters of the system. To be robust, we typically select two
to three control volumes and the final registration parameters
are determined by averaging that derived from the individual
control volumes. The use of control volume for rigid image
registration is especially useful when there are artifacts in
one or both input images.

For deformable registration, we usually select five or
more control regions for each plane and the translation and
rotation of each volume are generally different. The obtained
homologous control volume pairs play a similar role as the
nodes in the BSpline model. After the nodal set is deter-
mined, spline deformable registration can be used to relate
the remaining part of the images. The detail of the calcula-
tion is described as follows.

Mathematically, the task of a deformable image registra-
tion is to find the transformation matrix, T�x�, that maps an
arbitrary point x on the model image � to the corresponding
point x� on the reference image � �or vice versa� in such a
way that the best possible match, as measured by the regis-
tration metric, is achieved. In BSpline deformable registra-
tion calculation, the image is generally divided into a grid
with N3 cells. The corner of a lattice cell is referred to as a
node and is indexed by i �i=1,2 , . . . ,N3�. The spacing be-
tween the nodes are usually 2–5 cm. The displacement of a
node i is specified by a vector xi and the displacement vec-
tors, �xi	, of a collection of nodes characterize the tissue
deformation. The displacement at a location x on the image
is deduced by fitting a polynomial expressed using the basis
spline �BSpline�16 to the grid nodes xi. In reality, the nodes
do not have to form a lattice on the model image. In our
BSpline deformable calculation, the mapped control volumes
are treated as the spline control points. Upon the completion
of the mapping of the control volumes, the positions of these
nodes on both input images are known. If the number of
control volumes is not enough to cover the whole image
volume, additional control points are placed on the model
image and the locations of the added nodes are determined
by optimizing the registration metric function with respect to
their displacements, as is done in conventional spline de-
formable calculation for the whole nodal set. Otherwise, no
additional nodes are required and one can proceed directly to
the spline interpolation1,7,17 to relate the voxels on the two
input images, as depicted in Fig. 1�b�. In this calculation, the
existing homologous control volume pairs provides valuable
a priori information of the registration and greatly reduces
the dimensionality of the problem of finding an adequate set

of control points.
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To recapitulate, a deformable registration calculation in
the proposed approach is constituted of two steps: mapping
of the control volumes and registration of the image data.
The first step is rigid registration in nature and yields the
translational and rotational parameters for each control vol-
ume. To complete the second step, a strategy of incorporating
the mapped control volumes needs to be in place. In our
calculation, the coefficients of the transformation matrix T�x�
are the node displacements and need to be calculated only
for those added nodal points, because the locations of the
auto-mapped control volumes are already known with high
confidence.

F. Search space characteristics and convergence
analysis

Image registration is to establish a voxel-to-voxel map-
ping between the two input entities. The change of the metric
function with the relative displacement of the two inputs
provides a useful evaluation of the search space. The value
of the metric function reaches its minimum or maximum
when the two images are aligned and increases/decreases as
they moved away from each other. A desirable metric func-
tion should exhibit a single distinct global minimum/
maximum and vary smoothly as the two images are slide
away gradually. For the rigid registration, we plot the metric
as a function of the relative displacement of the two mirror
control volumes. For comparison, we also plot the metric
function for conventional registration, in which the final
transformation parameters are obtained by iteratively adjust-
ing the relative positions of the two images. For nonrigid
registration, the behavior of each control volume is different
and the metric functions for some selected control volumes
are plotted when the volumes are displaced away from their
ideally mapped locations.

In general, the optimization result should be independent
of the initial values of the system variables. The convergence
behavior of the proposed method is studied for both rigid and
nonrigid image registrations by starting the registration cal-
culation with a number of initial transformation parameters
chosen randomly. For each calculation, we plot the metric
value as a function of the iteration step. The results are com-
pared with that obtained using conventional approach when
treating each input image as an entity. In addition, the shifts
toward the optimal match in the x, y, and z directions result-
ing from each of the calculations are plotted for the two-step
registration and the conventional registration.

A checkerboard display tool, where images to be com-
pared are merged together in a chesslike pattern, is used to
assess the difference between the two images before and af-
ter registration. At the transition zone it is possible to mea-
sure the mismatch between anatomical structures in the two
images. Ideally, when the two images are perfectly aligned,
no difference should be visible in the checkerboard of the

two images.
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G. Case studies

The utility of the proposed two-step registration method is
demonstrated by studying a few rigid registrations and a non-
rigid registration case. The first two are cancer patients with
tumors in the abdomen regions, who have undergone both
CT and �18F� fluorodeoxythymidine �FLT�-PET scans. Here
FLT is a marker for thymidine kinase activity, representing
one of the potentially more selective tracers that have been
under intense investigations.18 A side feature of FLT-PET is
that bony structures appear clearly because of the high up-
take of the bone matrix, which makes the registration of PET
and other anatomic imaging modalities simple. The tech-
nique described above is used to fuse the CT and FLT-PET
images and the results are compared with that obtained using
conventional approach without relying on the use of control
volumes. For the first case we use three cubic volumes with
the side length of 7 cm, and the second case 5�10

3
�10 cm .
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The next case consists of the registration of head CT and
MRI images. Although the head is commonly believed to
have no deformation, in practice, subtle differences may ex-
ist between images acquired using different modalities or
under different conditions, which may adversely affect the
registration. For example, the patient studied here uses an
immobilization mask in the CT scan but not in the MRI.
Additionally, this patient has a tumor in his left eye, which
makes the MRI appear differently from a regular situation.
Moreover, CT artifacts exist in the mandible region due to
the denture, which does not have much impact on the MRI
data. These factors complicate the registration calculation.

The input to the deformable image registration study is
the CT images acquired at the expiration and inspiration
phases using a 4D CT protocol.19 A set of control volumes is
selected on the exhale image �Fig. 9�c�� and a successive
rigid registration is carried out to find their locations in the
inhale image. These homologous control volumes pairs then

FIG. 2. Sagittal, coronal, and axial views of the FLT-
PET images �first row� and CT images �second row�.
The checkerboard of the CT and FLT-PET images after
registration is shown in the third row and the left panel
of the fourth row. The right panel of the fourth row
shows a stereotactic view of the matched PET and CT
images after registration.
serve as the nodes for the subsequent spline deformable cal-
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culation to match voxels on the exhale image with that of the
inhale image for the purpose of 4D treatment planning.20,21

III. RESULTS

A. Study 1: Rigid registration of CT and FLT-PET
images

The input CT and FLT-PET images used for the first case
in this study are shown in the first and second rows of Fig. 2.
The control volumes relative to patient geometry are de-
picted on the right of the fourth row of Fig. 2 as red wire
frames. To visually evaluate the registration results, in the
third row of Fig. 2 we show a checkerboard comparison of
the PET and CT images after registration. The sagittal check-

FIG. 3. Metric space of FLT-PET and CT registration when the whole image
set is used �a� and when three control volumes on the bony structure are
used �b�.
erboard image of the PET and CT is shown in the left of the
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fourth row of Fig. 2. The images are registered accurately,
with no geometric mismatch visible in the transition zone. A
3D view of the registration is presented on the right of the
fourth row of Fig. 2, where an excellent coincidence is ob-
served between the bony structures revealed in the CT
�white� and the PET images �orange�. In both 3D rendering
and checkerboard display, the bladder is bright in the PET
image, but barely visible in the CT images. The feature in-
herent to a certain type of images but not others is problem-
atic in multimodality image registration since it “disturbs”
the mathematical correspondence between the two images.
Another commonly seen example of this is the registration of
CT images containing metal artifacts with MRI data �see
next section�, in which no artifacts present. Control volume-
based registration permits us to exclude the undesirable re-
gions based on a priori knowledge and provides an effective
way to find the truly optimal solution in this situation.

In Fig. 3 we compare the NCC metric space when the
whole image is used with that when control volumes are
used. The surface plot in Fig. 3 represents the NCC function
values when the two input images �Fig. 3�a�� or two corre-
sponding control volumes �Fig. 3�b�� placed in the lumbar
region are shifted away from each other. The function values
are color-coded from red, representing suboptimal matching,
to blue, representing the optimal registration sought after. In
the former situation, it is seen that the metric function is not
smooth and multiple local minima exist. Aside from the fact
that the PET image is generally noisy, the high-intensity vox-
els in the bladder �caused by the rapid excretion of FLT
through the urinary system� that do not have a correspon-
dence in the CT image also influence the behavior of the
metric function in the former case. A single minimum in the
control volume-based registration is, on the other hand,
clearly visible and the search space is very smooth. More-
over, the NCC value at the minimum in this case is 0.22,
which is two orders of magnitude deeper than that of the
conventional registration. The improvement in the functional
behavior of the metric makes the image registration calcula-
tion much more efficient. This is also supported by the fol-
lowing analysis.

To examine the algorithm’s ability to find the correct
shifts to the best match, we assigned a known displacement
to the two input images and studied the registration process
by starting the iterative optimization from different initial
transformation parameters. In Fig. 4�a� we show the NCC as
a function of iteration step for 50 randomly assigned initial
trial transformation parameters. While the trajectory for each
optimization calculation is different, they all converge to the
same NCC value in the control volume-based calculations.
The convergence of the calculation is also evident from Fig.
4�b�, where it is shown that, for a given mismatch of the two
input control volumes, all 50 calculations with different ini-
tial parameters lead to the same shift values, �x ,y ,z�
= �−1.8,3.3,5.3�, where the coordinates are in mm. This is,
however, not the case for the conventional approach based
on the information contained in the whole image entity. As

seen from Fig. 4�c�, the NCC converges to different values
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when different initial conditions are used. Furthermore, the
shifts �Fig. 4�d�� resulted from the approach fluctuate from
calculation to calculation. In this situation, the average shift
of the 50 runs in the x, y, and z directions are found to be
�−2.1, 0.85, 9.9�. The variation range of the shifts in the
control volume-based calculations are all within 0.2, 0.5, and
0.4 mm in the x, y, and z directions. The fluctuation in the
conventional approach is, however, much greater: 15.8, 6.2,
and 21.0 mm, respectively. In most cases, the results came
out of the conventional approach represent, at best, subopti-
mal solutions. The misregistration is the z direction is par-
ticularly large, presumably due to the high intensity bladder
in PET, which has no correspondence in CT.

The input CT and FLT-PET images for the second case
are shown in the first and second rows of Fig. 5, along with
a checkerboard display of the PET and CT images after reg-
istration �the third row�. Once again, no geometric mismatch
is visible in the transition zone. A 3D view of the registration
is also presented in Fig. 5, where an excellent coincidence is
observed between the bony structures revealed in the CT
�white� and PET images �orange�. In both 3D rendering and
checkerboard display, the bladder and the liver are bright in
the PET image, but not on the CT images. The NCC metric
function and the convergence behavior of the registration
calculation are similar to the previous case, as illustrated in
Figs. 3 and 4. The control volume-based calculation yielded
the correct transformation parameters, �x ,y ,z�= �0,0 ,0�, in
all 100 calculations with different initial parameters, whereas
the conventional approach based on the information con-
tained in the whole image entity was problematic and failed
to give the optimal solution. Indeed, for the 100 calculations

starting with different initial conditions, the variation range
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of the shifts in the control volume-based calculations were
within 0.1, 0.5, and 0.7 mm in the x, y, and z directions,
consistent with that resulting from matching the DICOM co-
ordinates of the PET and CT images. To illustrate the ability
of the algorithm in finding the optimal mapping, in Fig. 6 we
show 5 �out of the 100� independent registrations starting
from different initial mismatches with inclusion of rotational
degrees of freedom. Because the patient was scanned using a
hybrid PET/CT scanner, the DICOM coordinate match of the
two sets of images can be regarded as a “gold standard” of
registration, and the above agreement indicates that the con-
trol volume-based method is accurate in dealing with clinical
image registration. The fluctuation in the conventional calcu-
lation was, however, much greater: 11.0, 75.2, and 65.0 mm,
respectively. The results coming out of the conventional ap-
proach are clinically unacceptable.

In general, PET images are noisy and have little anatomic
information to yield descent registration with CT images.
Most, if not all, image registration algorithms are problem-
atic when applied to the registration of PET and CT images
because there is simply not enough common information be-
tween the two datasets �which makes the software PET-CT
registration an extremely ill-posed problem�. When dealing
with general FDG-PET and CT registration, there is no ex-
ception for the proposed method because it relies on the
common information between the two images to reliably
map the control volumes. However, in a special case when
the FLT tracer is used for PET imaging, the patient’s bony
structures have high FLT uptake and show up on the PET
images and it is possible to use image registration algorithm
to register the PET and CT images. For pelvic FLT-PET im-

FIG. 4. Convergence analysis for a
rigid registration case with �left col-
umn� and without �right column� the
use of control volumes. The control
volume-based registration converges
to the same cost function value and
leads to reproducible shift values in
the x, y, and z directions, labeled by
triangles, squares, and circular dots,
respectively. In the standard registra-
tion, large variations are observed in
the shifts along the x, y, and z
directions.
aging, however, the bladder shows up as a high-intensity
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region because of the accumulation of FLT in bladder, which
has no correspondence in the CT images. The control
volume-based registration affords an effective way for us to
deal with the issue.

B. Study 2: Rigid registration of CT and MRI images
for a brain case

In Fig. 7 we compare the control volume-based and con-
ventional MI-based registration of CT and MRI data at four
different slice locations for a brain case. In general, a MI
metric is preferable for multi-modality image registration
such as CT-MRI registration. Three cubic control volumes
are placed in the model image. The control volume-based
registration method outperforms the conventional approach

in both computational speed and the quality of the registra-
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tion. Indeed, the computing time for the two different tech-
niques to find their “optimal” solutions is reduced by almost
an order of magnitude in the control volume-based calcula-
tion. In the conventional registration, artifacts caused by the
mask, tumor in the eye, and the denture modify the metric
function and lead to unrealistic solutions. In Fig. 7, it is seen
that the whole CT set is dragged down relative to its ex-
pected location. The misregistration is evident especially in
the second row of Fig. 7 where the tumor visualized in the
MRI has no correspondence in the CT image. This mismatch
is eliminated in the control-volume based calculation, since
only artifact-free volumes are considered in the metric cal-
culation.

Starting from an initial spatial association of the two input

FIG. 5. Screenshots of sagittal, coro-
nal, and axial views of the FLT-PET
images �first row� and CT images �sec-
ond row�. The checkerboard of the CT
and FLT-PET images after registration
is shown in the third row. The fourth
row shows a stereotactic view of the
matched PET and CT images after
registration.
images, we have performed 50 independent calculations,
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each with different initial trial transformation parameters.
Similar to the PET-CT registration, the control volume-based
algorithm yields almost identical shift values in the x, y, and
z directions for all 50 runs. Interestingly, the average shifts
for the 50 independent calculations in the conventional reg-
istration are fairly close to that of the control volume-based
calculation: �6.0 mm, 44.7 mm, 82.7 mm� for the control
volume-based versus �6.3 mm, 44.6 mm, 83.7 mm� for the
conventional calculation. For the conventional approach,
however, the final transformation parameters vary from test
to test and do not converge to the same values. The variation
range in the control volume-based calculation are all within
1.9, 3.0, and 2.8 mm in the x, y, and z directions, whereas the
fluctuations in the conventional approach are much greater:
10.5, 6.7, and 13.6 mm, in the three directions. As seen from
Fig. 8�d�, the misregistrations for most individual runs in the
x and z directions are particularly serious.

In addition, we have carried out quantitative evaluations

of how registration results depend on the size and placement
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of control volumes for the brain CT-MRI registration. Three
different sized control volumes were studied. For each size,
the volume was placed at 20 randomly selected artifact-free
locations and the registration parameters were then recorded.
The results are summarized in Fig. 9. It is seen that as the
control volume increases the fluctuation from one control
volume placement to another decreases dramatically. A mil-
limeter order of accuracy is achievable with a reasonable
sized control volume. We wish to emphasize here that the MI
metric used for CT-MRI registration is known to be statisti-
cally noisy. For intramodality registration such as CT-CT or
CT-cone beam CT, our experience indicated that a control
volume of 1–2 cm3 would result in a similar statistic as the
data shown in the third column of Fig. 9.

C. Study 3: Deformable registration of exhale and
inhale CT images for a thorax patient

The proposed method is applicable to both rigid and non-

FIG. 6. Iterative calculation processes
for five independent registrations start-
ing from different initial matches for
the patient shown in Fig. 5. Some of
the curves stop earlier because the
convergence criteria is met.
rigid image registration problems. The inputs to be registered
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in this example are CT images acquired at expiration and
inspiration �Figs. 10�a� and 10�b��. Five control volumes are
selected on the model image �Fig. 10�c�� and they are then
mapped independently to their corresponding locations in the
reference image �Fig. 10�d��.

Similar to the convergence analysis presented in the first
example, in Fig. 11 we plot the NCC metric for three of the
five control volumes when they are shifted away from their
ideal match positions. To better understand the system, we
have chosen two different sized control volumes: 20 mm
�upper row� and 40 mm �lower row�. In both situations, the
metric space is smooth and has a very pronounced ridge.
Obviously, this behavior is resulted from the fact that the
intensity variation in the selected control volume is predomi-
nantly in the direction perpendicular to the boundary of the

FIG. 7. Comparison of the newly proposed control volume-based �left colum
registration. In conventional registration, the metric tries to accommodate a
other noises. The control volume-based calculation eliminates the influence

FIG. 8. Convergence analyses of a rigid brain CT-MRI registration using the
50 calculations with different initial transformation parameters converge to th

circular dots, respectively. For the latter case, the fluctuation in the final shift va
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lung. When comparing the metric function for different sized
control volumes, we note that the search space characteristics
do not change significantly. For the size of 20 mm, the peaks
and valleys of the search space are more pronounced be-
cause, as the number of pixels reduces, a small mismatch
would lead to a large variation in the metric function. As the
size of the control volume increases, the details of the func-
tion are “evened out” by the large number of voxels. In both
situations, the positions of the minimum are found to be at
�x ,y ,z�= �−5.5,−11.3,3.4�, �−1.8, −12.0, 3.3�, and �−3.8,
2.6, 0.6� for the three control volumes, respectively, where
the coordinates are in millimeters. In practice, determining
the size of a control volume is a matter of tradeoff between a
few factors, such as the accuracy, sensitivity against a small
mismatch of the control volume, and calculation speed.

conventional whole image-based algorithms �right column� for rigid image
voxels, which becomes less adequate in the presence of image artifacts or
aging artifacts and produces better registration.

rol volume-based and whole image-based algorithms. In the former case, all
e shift values in the x, y, and z directions, labeled by triangles, squares, and
n� and
ll the
cont
e sam
lues are much larger.
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After the mapping of the selected control volumes, a
warping using the spline model is used to register the re-
maining part of the image with the control volumes serving
as the control points. To have enough control points to war-
rant a robust spline calculation, we added one control point
inside the region encompassed by the points. Because the
added point is in a deformable region, it is less justifiable to
use the auto-mapping procedure described above to find its
mirror point on the reference image. Following the step out-
Medical Physics, Vol. 33, No. 4, April 2006
lined in Fig. 1�b�, we used a B Spline-like algorithm to op-
timally locate its mapping with the known nodal points
#1–#5 as constraints. The mapped point is shown in Fig.
10�d� by a circle. The final result of the deformable registra-
tion is shown in Fig. 10�d�. The model image is represented
as semi-transparent background in Fig. 10�c�. The selected
rectangular control volumes are shown in Fig. 10�c� as over-
lays on the background image, with the image in each con-
trol volume cropped from the reference image to assess the

FIG. 9. Dependence of registration on
the placement of the control volume
for three different sized volumes. For
each size, the shifts resulting from 20
random placements of the control vol-
ume are shown.

FIG. 10. Axial slices of the model �a�
and reference �b� images for the de-
formable registration study. Rectangu-
lar control volumes, #1 to #5, are
placed in the model image and their
mappings are shown on the reference
image. The anatomy in the regions af-
fected by the respiration does not
match initially �c�. After the control
volume-based deformable registration,
the anatomy matches very well, as
confirmed by the overlay image �d�.
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difference between the two input images. After registration,
no difference between the mapped model image and the ref-
erence image is observable �Fig. 10�d��.

The results obtained with the control volume-based
method are compared with that obtained using a “brute-
force” BSpline formalism.22 In Fig. 12�a� we show the
checkerboard display of the two input images as given in
Figs. 10�a� and 10�b�. Before registration, deformations up to
1 cm in the two phases are clearly observable in the check-
erboard transition zone, as marked by red arrows. Both con-
trol volume-based and the BSpline models �Fig. 12�b�� are
able to register the two images. The mapped inhale images
from the two different approaches are displayed in Fig. 12�b�
using a checkerboard tool. The difference between the two
mapped images is found to be less than 2 mm in any region.
The control volume-based registration took only a few min-
utes to complete the calculation process, whereas one–two
hours are required by the conventional BSpline technique to
find the solution because it was needed for computer to op-
timize the metric function with respect to a large number of
nodal variables.

The convergence behavior of the deformable registration
is assessed in a similar fashion as described previously. For a
pair of control volumes with intentionally introduced starting
mismatch, we repeated the registration calculation 100 times
with randomly assigned initial transformation parameters.
The resultant transformation parameters of the first three
control volume pairs for the 100 independent registration
calculations are plotted in Fig. 13. For the first control vol-
ume, the shifts in x, y, and z directions are found to be �−5.5,

FIG. 12. Checkerboard comparison of the model and reference images before
to 1 cm is visible before registration, as marked by the arrows in �a�. Th
conventional BSpline calculation, but with a significantly reduced computati

algorithms is shown in �c�.
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−11.3, 3.4�. The transformation parameters in the three di-
rections resulted from the calculations are all within the
range of 0.9, 1.3, and 1.5 mm, respectively. Similar conver-
gence is achieved for the other control volumes. The varia-
tion ranges for the second and third regions in the directions,
for example, are �1.4, 1.9, 1.3� and �1.1, 1.6, 1.5� in millime-
ters, respectively.

IV. DISCUSSION

With the recent advancements in image-guided radiation
therapy �IGRT�,23 multi-modality imaging becomes increas-
ingly important. Full realization of the potential of IGRT and
highly conformal IMRT would be impossible without a ro-
bust and efficient image registration technique. In general,
image registration has two important aspects: formulation of
the problem and optimization of the transformation param-
eters required to match the two input images. In this work we
proposed a general two-step registration technique, in which
homologous pairs of control volumes are obtained using an
auto-mapping algorithm and the pairs are then used as the
a priori knowledge of the system to facilitate the registration
process. In particular, we present our experience with the
selection of model parameters, optimization algorithm, and
the validation of the technique. The development of the pro-
posed technique was motivated by an intuitive observation
that, in image registration, the reliability of information in an
image is generally spatially heterogeneous and some regions
in the model image can be more reliably mapped to the ref-
erence image than others. In other words, there are at least

FIG. 11. Metric function for the first
three control volumes for two different
control volume sizes �20 mm for up-
per row and 40 mm for the lower
row�. In both cases, the search spaces
are smooth, with a very pronounced
ridge. The search space characteristics
and the location of the global minima
do not depend significantly on the con-
trol volume size.

nd after �b� control volume-based deformable registration. Displacement up
trol volume-based algorithm yielded the same registration as that of the

ime. A checkerboard comparison of the mapped model images from the two
�a� a
e con

onal t
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two types of regions in a model image: regions whose cor-
respondence in the reference image are easily identifiable
and regions whose mapping to the reference image is less
obvious for a variety of practical reasons, such as tissue de-
formation, breathing movement, lack of distinct image fea-
tures, image artifacts, or inherent difference in the imaging
modality. Mapping of the two types of regions should be
treated differently, rather than equally as implemented in cur-
rent image registration algorithms. The use of control vol-
umes placed on the reliable regions permits us to eliminate
the uncertainty and/or disturbance arising from the less reli-
able regions, thus improving the performance and fidelity of
the image registration calculation.

A control volume is generally placed in a region where
the anatomical correspondence between the model and refer-
ence images can be easily realized by a quick visual judg-
ment. In the case of rigid registration, the mapping of K �K
�3� control volumes yields K+1 sets of transformation pa-
rameters, in which K from individual control volume and one
from the coordinates of the center of mass of all the control
volumes. Each set of transformation parameters include three
translational and three rotational parameters. The first K sets
of transformation parameters tend to be regional, whereas the
last one global. In our calculation, the final registration pa-
rameters are derived by averaging the K+1 sets of transfor-
mation parameters. Obviously, more sophisticated estimation
based on the K+1 sets of transformation data is possible. In
particular, some consistency check between the K+1 sets of
data can be imposed to ensure that the parameters derived
from the mapping of the individual control volumes are all
within a certain tolerance. This should be able to alert the
user if an affine transformation is needed to better describe
the transformation data. The approach is superior over the
existing registration technique based on the auto-matching of
the two whole image sets because it is not influenced by the
local disturbance from imaging artifacts. In reality, differ-
ence in image features due to the use of different acquisition
protocols may constitute “noise” to the registration algorithm
and lead to inaccurate or unrealistic registration. Using con-
trol volumes provides an effective way to avoid the distur-
bance and allows us to fully utilize the features that are

FIG. 13. Convergence analysis for the first three control volumes shown in
registration tests starting from different initial transformation parameters. All
for the x �triangles�, y �squares�, and z �circular dots� directions.
known with high confidence to enhance the fidelity of the
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registration. The two-step registration technique has the ad-
vantage of the landmark-based registration without having to
go through the hassle of interactively selecting a homologous
control point pairs. The proposed technique also eliminates
the subjectivity often associated with the landmark-based
registration and offers operator independence and reproduc-
ibility. In reality, as noted by West et al.,2 a careful visual
inspection of the results obtained from any automatic regis-
trations is crucial in a clinical setting to ensure that the reg-
istration found by a computer is clinically reasonable.

For deformable registration, the benefit of the two-step
registration is even more significant. In addition to the in-
creased robustness and confidence level, the technique
greatly speeds up the calculation process. In conventional
BSpline method, for example, the mapping of the nodes or
the transformation of the nodes from the model image to the
reference image is accomplished by a searching algorithm,
which treats the transformation parameters of the nodes as
interrelated system variables and hence necessitates an itera-
tive examination of a huge number of trial parameters under
the guidance of the registration metric. The amount of com-
putation is proportional to O�N3�, where N is the number of
the nodes. In the proposed two-step registration, the selected
control volumes can be regarded as spline control points. The
determination of most, if not all, nodes is done indepen-
dently, which essentially reduces the calculation into an
O�N� problem. In reality, the number of nodes chosen by
independent mapping may not be enough to cover the whole
patient volume to yield a reliable deformation field every-
where inside a patient. In this situation, additional nodes may
be introduced by using the conventional BSpline method
with the positions of the added nodes determined collectively
�the control volume method-mapped nodes serve as con-
straints in the modified BSpline method�. The modified or
hybrid BSpline registration method, in which one first maps
a fraction of nodes located on the reliable regions through
the control volume mapping and then proceeds with the stan-
dard BSpline calculation for the determination of remaining
nodes, also reduces the dimensionality of the deformable im-
age registration problem. This not only significantly speeds
up the calculation but also improves the convergence behav-

. 8. Presented are the shifts of the final transformation as obtained in 100
ulations converged to the same solution to within a range of less than 2 mm
Fig
calc
ior of the registration. The reduction in computational time
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may have practical implication as the radiation therapy is
moving toward more sophisticated image-guided patient lo-
calization and dose delivery and verification.23

Our study has also shown that the use of control volumes
can greatly simplify the optimization calculation incurred in
the image registration problem. Over the years, powerful but
computationally intensive algorithms, which are capable of
statistically escaping from local minima, such as simulated
annealing or genetic algorithms, have often been used to at-
tack the optimization problem. Even with these stochastic
algorithms, finding the true solution of the problem can still
be challenging because of the wide variety of possible pixel
intensities within an organ and the complex behavior of the
metric function. This has been clearly demonstrated in the
examples presented above. The distinct feature of the control
volume smoothens the metric function space and makes it
simple for the search algorithm to converge to the global
solution.

V. CONCLUSIONS

In conventional techniques the information contained in
the model and reference images is employed as input entity
without “filtering” or “prioritization.” As thus, any artifact is
treated as part of the input information and adversely affects
the final registration result. We have proposed a novel
method for auto-selection of the control volumes and de-
scribed a two-step technique for both rigid and deformable
image registrations. Instead of relying on the interactive se-
lection of homologous control point pairs on both model and
reference images, the user needs only to identify some con-
trol volumes on the model image in a somewhat arbitrary
fashion. The approach has two major advantages: �i� It al-
lows us to incorporate a priori knowledge into the image
registration process to avoid/reduce potential registration er-
rors caused by image artifacts. �2� It improves the computa-
tional efficiency because the control volume involves fewer
voxels. The method was applied to both rigid and nonrigid
image registration problems and our results indicated that the
registration is reliable and provides a valuable tool for intra-
or intermodality image registration. The increased robustness
and confidence in the registration and the improved conver-
gence behavior of the calculation are the important features
of the new technique. Compared to the manual rigid regis-
tration, this method eliminates the nuisance of the control
point pair selection and removes a potential source of error
in registration. Compared to the automated method, the ap-
proach is more intuitive and robust, especially in the pres-
ence of image artifacts. Thus the method should find useful
applications in radiation oncology and other image-guided
intervention procedures.
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IMAGE INTERPOLATION IN 4D CT USING A BSPLINE DEFORMABLE
REGISTRATION MODEL

EDUARD SCHREIBMANN, PH.D.,* GEORGE T. Y. CHEN, PH.D.,† AND LEI XING, PH.D.*

*Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA; †Department of Radiation Oncology,
Massachusetts General Hospital, Boston, MA

Purpose: To develop a method for deriving the phase-binned four-dimensional computed tomography (4D CT)
image sets through interpolation of the images acquired at some known phases.
Methods and Materials: Four-dimensional computed tomography data sets for 3 patients were acquired. For
each patient, the correlation between inhale and exhale phases was studied and quantified using a BSpline
deformable model. Images at an arbitrary phase were deduced by an interpolation of the deformation coeffi-
cients. The accuracy of the proposed scheme was assessed by comparing marker trajectories and by checker-
board/difference display of the interpolated and acquired images.
Results: The images at intermediate phases could be derived by an interpolation of the deformation field. An
analysis of marker movements indicated that 3 mm accuracy is achievable by the interpolation. The subtraction
of image analysis indicated a similar level of success. The proposed technique was useful also for automatically
mapping the organ contours in a known phase to other phases, and for designing patient-specific margins in the
presence of respiratory motion. Finally, the technique led to a 90% reduction in the acquired data, because in
the BSpline model, a lattice of only a few thousand values is sufficient to describe a CT data set of 25 million
pixels.
Conclusions: Organ deformation can be well modeled by using a BSpline model. The proposed technique may
offer useful means for radiation dose reduction, binning artifacts removal, and disk storage improvement in 4D
imaging. © 2006 Elsevier Inc.

Four-dimensional computed tomography, Deformable registration, Image-guided radiotherapy, Delineation,
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INTRODUCTION

espiratory motion degrades anatomic position reproduc-
bility during imaging (1–10), distorts the shapes of the
umor target, displaces the organs, and causes errors during
adiation delivery (11–15). In the presence of breathing
otion, tumors and sensitive structures in the thorax and

bdomen can move as much as 2–3 cm, posing a significant
hallenge for radiation therapy planning and delivery. Until
ecently, tumor motion has been handled primarily by using
espiratory-gating or breath-hold technique (16). A more
dvanced and potentially more beneficial approach is four-
imensional computed tomography (4D CT), which adopts
echniques developed for cardiac CT imaging and allows
ne to acquire image data at specified phases over several
espiratory cycles and then combines the data into phase-
inned images. Vedam et al. (9), Low et al. (17), and
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1537
ietzel et al. (18) have refined the imaging techniques
eveloped for phase binning based on cardiac motion and
pplied them to the problem of respiratory motion. The
ignals used to stamp the time point of the image data are
ither from a respiration monitor (RPM; Varian Medical
ystems, Palo Alto, CA) (9) or spirometry-based tidal vol-
me measurement (17). By these methods, thoracic 4D CT
mages accounting for respiratory motion have been suc-
essfully acquired using single-slice scanners (8, 9) and
ultislice 4D CT scans (17, 19, 20). Also, 4D cone beam
T scans have been acquired using a benchtop system (21)
nd on-board cone beam CT (22, 23).

Although the 4D CT provides a powerful tool to study
espiratory motion, a hurdle in realizing all the potential
ains is the need to acquire images for all breathing phases.
n the above-mentioned methods, the data acquisition is

rdi, and S. Nehmeh from Memorial Sloan-Kettering Cancer
enter for providing some of the 4D CT images used in this study.
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brute force” in nature, and 10–20 sets of phase-resolved
D CT images are needed. In addition to greatly increasing
he workload of the CT scanner, the radiation dose to the
atient becomes a major concern (24). The resultant data are
ypically comprised of 1,500–3,000 images occupying sev-
ral hundred megabytes (MB) of disk space. Additionally,
he approaches may lead to artifacts if the correlation be-
ween RPM spirometer and scanner (17) is not accurate.

A 4D CT can be either prospective or retrospective. In the
ormer case, the scanner collects images at only one of the
reathing phases of the patient instead of scanning contin-
ously. Thus, the system acquires a series of contiguous
mages at appropriate predetermined phases and creates a
ingle volumetric image corresponding to a specific phase.
he retrospective 4D CT scan results in multiple image sets,
orresponding to different breathing phases of the patient. It
onsists of three relatively orthogonal processes (9, 17, 18,
4): recording of respiratory signal(s), acquisition of time-
ependent CT projection data, and construction of a 4D
mage from these data. The question we ask in this research
s that, given a few sets of phased 3D CT (for example, 3D
T images obtained at inhale and exhale points), is it
ossible to deduce the intermediate phases by warping or
interpolating” the images with a deformable registration
odel? If successful, the method can greatly reduce the

adiation dose to the patient while maintaining the benefits
f 4D CT. As a byproduct, the contour information outlined
or one phase can be automatically transformed to the other
hases. A major task in this endeavor is the determination of
atient-specific organ deformations occurring between in-
ale and exhale phases. Several relevant image registration
echniques have been reported in the literature (25–38). A
eformable procedure based on the finite element model,
here images are described as blocks of elastic materials on
hich forces apply, was proposed by Bharath et al. (25) and
rock et al. (26). However, the values of the elasticity and
ensity constant for various tissues are not readily available
nd have to be found by a trial and error procedure. A fluid
ow registration was applied in radiation therapy to auto-
atically warp contours delineated in one phase into next

hases (27). Recently, a simpler technique based on spline
nterpolation was proposed (28). This model uses only a
attice of nodes overlaid on the image, where deformation at
ny location in the image is deduced by spline interpolation
f the closest node coefficients (29). In reality, the spline
oefficients can come also from a set of user-defined control
oints, as was done by Fei et al. (28) in a study of warping
nd rigid registration of magnetic resonance volumes. The
implicity and robustness of the free-form deformation
BSplines) defined on discrete nodes make it useful for
linical applications (30, 31). This method was applied also
o directly register prostate CT and MRI/MRSI and was
alidated by using a series of phantom measurements (32,
3). Rohlfing et al. (34) and Kaus et al. (35) used a BSpline-
ased registration to study liver deformation, and an accu-
acy of 3 mm was achieved. Berlinger et al. (36) and

chweikard et al. (37) obtained synthetic digitally recon- d
tructed radiographs at different breathing phases using the
ame approach. Coselmon et al. (39) used a similar tech-
ique to study the accuracy of mutual information–based
T registration of the lung at exhale and inhale respiratory

tates.
In the following text, we present a general BSpline model

or deriving the images at the intermediate phases by start-
ng from two or three image sets at some distinct phase
oints such as inhale/exhale phases. The performance of the
lgorithm is assessed by monitoring the displacements of
mplanted or surface markers. The general reference drawn
rom this study is that it may not be necessary to acquire the
T images at all phases to obtain the detailed 4D picture of
patient. The information at a few distinct phases is suffi-

ient, because the behavior of the system at the intermediate
hases can be reasonably predicted by using a deformable
mage registration model. Although the focus of this study
s to deduce the images at the intermediate phases, the
echnique developed here can be generalized also for auto-
egmentation of the organs at all phases by starting from the
ontours at a given phase point. The tool can be employed
lso to analyze the geometric displacements of various
rgans for the determination of the minimal target margin in
resence of respiratory motion.

METHODS AND MATERIALS

mage acquisition
The 4D CT images of the first patient were acquired by using a

E Light Speed QX/I scanner (GE Medical Systems, Milwaukee,
I). Ten phase bins were set for the 4D study, and 110 images
ith a 3.75-mm slice thickness were acquired for each phase. The

ecorded exposure time was 800 s. The 10 breathing phases re-
orded contained over 402 MB of data in DICOM image format.
he patient had three fiducial markers implanted in liver, kidney,
nd vertebral body.

Two additional cases (a female and male torso) were acquired
sing a GE Discovery QX/I CT scanner. In each case, 10 phases,
ach consisting of 90 images with 2.5-mm slice thinness, were
cquired. The size of the 4D scans was 402 and 502 MB, respec-
ively. A single marker was placed on the patient’s abdomen or
orso to track the displacement. The image acquisition time was
00 s, and exposure time was 750 s.
The study was approved by the Institutional Review Board, and

ll participants gave written informed consent. For each patient,
he 10 bins of the 4D CT data set spanned over the whole breathing
ycle and were indexed from CT0 to CT90, with CT0 correspond-
ng to the start point of the expiration and CT40 the full inspiration
oint. Image sets from CT10 to CT30 represent the patient during
he inspiration, whereas CT50 to CT80 represent expiration.

We selected CT0 and CT40 as the input to the image interpo-
ation algorithm with the intent of deriving the images CT10,
T20, and CT30. The synthetic images deduced by the registration
lgorithm are termed “interpolated” images. The effort was fo-
used on the inspiration process, but the same calculation can be
imilarly done for other phase points. To assess the accuracy of the
mage warping, the interpolated images were compared quantita-
ively with the actual CT10, CT20, and CT30 images acquired

uring the 4D CT scanning.
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oftware and hardware platform
The image warping software was implemented using two related

pen-source software toolkits named ITK (40) and VTK (41). ITK
onsists of template-based code for a large number of image
egistration algorithms and was used in this work for the image
egistration study. VTK consists of tools for 3D visualization and
ontouring and was used to determine the marker positions, extract
nd interpolate surfaces, and compute distances between corre-
ponding surfaces. For convenience, in the following text we outline
he methods used in our calculation with attention paid to the issues
pecific to CT image registration. All calculations were done on a
tandard PC computer with a Windows XP operating system and
Pentium 4 Processor at 1.6 GHZ, 256 MB of RAM. The DICOM
rotocol was used for image data communication and transfer. The
TK and ITK have a DICOM filter configured to read image files

n the DICOM format.

oregistration of images at known phases
There are two problems that need to be solved to derive the

mages at all intermediate phases from sets of 3D images acquired
t a few known phase points. First, the known image sets must be
egistered using a deformable registration model. An interpolation
an then be performed to obtain the images at the phases falling
etween the known phases (see sections below). The interpolated
mages find their phase tag in the respiratory cycle through the
hase monitoring curve obtained using external means such as an
PM or spirometry device. The overall process of the calculation

s depicted in Fig. 1.
Image coregistration is to map a floating image to a fixed or

arget image by using a mathematical model. The process is shown
n the top part of Fig. 1. The input to the registration software is the

ig. 1. Flow chart of the image interpolation process. First, a
eformable image registration procedure deduces patient-specific
isplacements between the inhale and exhale phases. The displace-
ents are subsequently used to create interpolated images at
pntermediary phases.
mages to be registered: a fixed image and a floating image,
escribed by their intensity distributions Ia(x) and Ib(x), respec-
ively. In our calculation, the fixed image was CT0, and the
oating image was CT40. The resulting transformation describes

he 3D deformation field describing the patient anatomy change
rom CT0 (starting inspiration) to CT40 (ending inspiration).

For convenience, the image is divided into a grid with N3 cells.
he corner of a lattice cell is referred to as a node and is indexed
y i (i � 1, 2, . . . N3). The displacement of a node, i, is specified
y a vector, xi, and the displacement vectors, {xi}, of a collection
f nodes characterize the tissue deformation. The displacement at
location, x, on the image is deduced by fitting a polynomial

xpressed using the basis spline (BSpline) (42, 43) to the grid
odes xi. Unlike other spline models, the BSplines are locally
ontrolled. That is, the displacement of an interpolation point is
nfluenced only by that of the closest grid points, and changing a
attice node affects the transformation only regionally, making it
fficient in describing local deformations.

Mathematically, the task of image registration is to find the
ransformation matrix, T(x), that maps an arbitrary point, x, on the
xed image to the corresponding point, x=, on the floating image
or vice versa) so that the best possible match, as measured by the
egistration metric, is achieved. As shown in the top part of Fig. 1,
he image registration proceeds in an iterative fashion. The matrix
oefficients of T(x) are the node displacements and are adjusted
teratively to minimize the normalized cross correlation (NCC)
etween the two images, defined as follows (Eq. 1):

f � �
�
i�1

Ia(xi) Ib(Txi)

��
i�1

Ia
2(xi)�

j�1
Ib

2(Txj)
, (1)

here i and j are the node indices on the fixed image, Ia(xi) is the
ntensity of the node at xi on the fixed image a, and Ib(Txi) is the
ntensity of the image b at where the node xi is mapped.

Optimization of the NCC function with respect to the displace-
ents of the nodes, {xi}, yields the transformation coefficients T(x)

hat map the points of image a to image b. Because the two images
o not necessarily have the same size, an interpolation may be
eeded to compute intensity at a mapped point, x � T(x)x. To
acilitate the optimization, it is preferable that both the deformable
odel and the metric are differentiable (30). This condition is

atisfied for the system that we are dealing with, as demonstrated
n a previous mathematical study (44).

It was found by previous researchers (30, 31, 45) that a lattice
ith spacing of �40 mm is needed to model liver deformations.
or all cases, we used a lattice of 15 nodes for each dimension,
orresponding to a spacing of approximately 30 mm. Because
hree variables are associated with each node, this setup leads to a
roblem of 10,125 variables, requiring the use of efficient opti-
izers to find the minimum of the NCC metric.
To optimize the system, we used the limited memory BFGS

lgorithm (L-BFGS) (46), which is known for its superior perform-
nce in dealing with high-dimensionality problems. Starting from
positive definitive approximation of the inverse Hessian H0 at x0,
-BFGS derives the optimization variables by iteratively searching

hrough the solution space. At an iteration, k, the calculation

roceeds as follows:
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. Determine the descent direction pk � � Hk�f �xk�.

. Line search with a step size �k � arg
��0

min f �xk � �pk�, where

� � 0 is the step size defined in the L-BFGS software package.
. Update xk�1 � xk � �kpk.
. Compute Hk�1 with the updated Hk.

At each iteration, a backtracking line search is used in L-BFGS
46) to determine the step size of movement to reach the minimum
f f along the ray xk � �pk. For convergence, � has to be chosen
uch that a sufficient decrease criterion is satisfied, which depends
n the local gradient and function value and is specified in L-
FGS by the Wolfe conditions (46).
During an image registration process, the above iterative calcu-

ation based on L-BFGS algorithm continues until the following
topping criterion is fulfilled:

�� f (xk)�2

max(1, �xk�2)
� 	 (2)

ith 	 � 10�6 in this study, or a preset maximum number of
terations (typically, 50 iterations) is reached. In reality, tracking
he value of registration metric during the iterative calculation also
rovides useful information and was used to assess the conver-
ence of the optimization algorithm.

erformance of image coregistration
Image coregistration is to relate the two input images: the fixed

nd the floating images (see Fig. 1). Ideally, the mapped floating
mage and the fixed image should be identical after the registration.
o evaluate the performance of the BSpline algorithm, we used the
opular checkerboard display tool, where images to be compared
re merged together in a chess-like pattern. At the transition zone
f the squares, difference in the two images can be easily visual-
zed and evaluated. If two images are similar, no differences
hould be observed in the checkerboard tool. An analysis of the
ubtraction image of the two registered images was also carried out
o evaluate the closeness of the two images. Histograms charac-
erizing the fractional voxels for a range of the Hounsfield number
HU) differences were presented before and after deformable im-
ge registration.

mage interpolation based on the deformable field derived
rom the images at known phases

Synthetic CT images were obtained by warping CT0 with the
iven deformation field defined by the BSpline lattice coefficients.
n our calculation, the range between CT0 and CT40 was divided
nto 30 incremental steps. The deformation field for each step was
btained by interpolating the transformation matrix derived from
he image coregistration between CT0 and CT40 (see the previous
ection for the calculation details). In general, the interpolated
mages lack the phase information. A phase stamp can be imposed
n the interpolated images by correlating the location of the
xternal marker(s) on the images with the RPM signal character-
zing the patient’s respiratory motion.

ssessment of the interpolated images
The accuracy of the interpolated images at the intermediate

hases was evaluated in three ways. First, we compared the posi-
ions of the implanted and surface markers in the interpolated
mages with those in the known 4D images at the corresponding

hases. The trajectories of the markers during the respiration a
rocess should ideally coincide with their positions in the known
D CT images. The trajectories of the markers were computed by
arping coordinates observed in CT0 with the deformation field
btained at each interpolation step. The locations of the markers in
hese images were measured using the display tools available in
TK.
The next level of tests involved tracking the surfaces of ana-

omic structures. The involved organs were delineated in both the
nterpolated and the known 4D CT images. We term them the
omplementary surfaces. For each point on one surface, a scalar
alue representing the distance to its complementary surface was
ssigned. Color-coded visualization of the distance permits direct
ssessment of the regions. In addition, the checkerboard display
nd subtraction image tools were also employed to evaluate the
ifference between the two sets of images. An analysis of the
ubtraction image of the interpolated and the actual images was
arried out to evaluate the closeness of the two images. Histograms
haracterizing the fractional voxels for a variety of HU differences
ere presented for all 3 patients.

egmentation of organ contours in 4D CT
The model was also used to map the contours delineated in one

hase to another phase, as was previously done by other investi-
ators using a fluid flow method (27). Although both algorithms
an successfully find the deformation field between the inhale and
xhale images, turbulence may occur during evolution of a fluid-
ased model, and thus a successive application of the fluid flow
lgorithm is needed between each pair of images. This procedure
s simplified by the usage of the BSpline model, because the
eformation field for the intermediary phases is deduced by a
irect interpolation. Starting from a mesh of the contour at CT0,
he warping of the contours was implemented by modifying coordi-
ates of each point according to the deformation field derived by the
Spline method. The vertices were unaltered during the process.

RESULTS

onvergence analysis
The convergence behavior of the registration was ana-

yzed by monitoring the value of the NCC as a function of
he iteration step for three different numbers of nodes: 5, 10,
nd 15. The results are presented in Fig. 2. In all cases,
onvergence was achieved in less than 50 iterations. The
nitial values of the metric are relatively good (�0.985),
ecause only voxel intensities near the organ boundaries are
ffected by the respiration. Indeed, the affected voxels (the
ffected voxels are the voxels whose HU units are changed
uring the breathing cycle) represented only a small percent
f the total number of voxels. It is remarkable that the
lgorithm was sensitive enough to detect and correct these
mall deviations.

The convergence analysis is useful for the determination
f optimal algorithm parameters, most notably the number of
odes. In practice, the value of this parameter is a result of
radeoff between the computational speed and the accuracy.

loose grid would not be able to describe small or local
eformation, whereas a dense grid may unnecessarily in-
rease the number of variables in the L-BFGS optimization

nd thus prolong the computation. For five nodes per di-
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ension, the NCC between the CT0 and CT40 phases was
ound to be �0.993. The correlation was improved to

0.996 and �0.997, respectively, when 10 and 15 grid
odes per dimension were used. Computation time is in
he range of 3 to 5 hours, depending on the number of
lices in the study.

For comparison, the above analysis was repeated with the
nsertion of an intermediate phase image, CT20. For the
ase of five nodes per dimension, the final metric in the
T0–CT40 registration could not reach the value in the
T20–CT40 registration, indicating that the deformation
etween CT0 and CT40 was too complex to be described by
uch a loose BSpline grid. However, for 15 nodes per
imension, the registration calculations converged to
0.9970 for CT0–CT40, �0.9978 for CT0–CT20, and
0.9983 for CT20–CT40 registration. Similar behavior
as observed for the remaining two cases. The final metric
alues for these two cases are presented in the inset of Fig.
c. A further increase of node number dramatically in-
reases the computational burden but does not significantly
mprove the accuracy. We therefore selected in this study a
rid with 15 nodes per dimension.

eformation as determined by the deformable registration
f the inhale and exhale phases
The range and characteristics of the anatomy deformation

ccurring during the respiration are of clinical interest. This
eature can be directly evaluated by using the coefficients of
he BSpline grid. We focus our discussion here on the lung
eformation. In Fig. 3a, we present a 3D visualization of the
Spline grid nodes (the nodes are denoted by green spher-

cal dots) in the coregistration of CT0–CT40 images. In
igs. 3b, 3c, and 3d, the deformations at all nodal points as
erived from the registration algorithm are displayed by
rrows. The orientation and length of an arrow show the
eformation direction and magnitude at the corresponding
oints. The inferior parts of the lungs (and thus the liver)
ove most. A deformation as large as 43.2 mm was ob-

Fig. 2. Assessment of optimal parameters for the def
correlation coefficient metric as a function of iteration
dimension). Each panel follows for different grid sizes the
the phases of CT0–CT40, CT0–CT20, and CT20–CT40
metric. Note that a change from 5 to 10 nodes resulted in
to 15 nodes resulted in only a marginal improvement (2
erved in the posterior region of the liver, which is con- t
rmed by the checkerboard comparison of CT0 and CT40
Fig. 4a), where most discrepancies are observed in the
pper liver, stomach, and thoracic region. For the second
atient, a similar analysis shows a displacement up to 14.2
m in the posterior part of the liver and 12.0 mm in the

horacic region. However, the deformation was more uni-
ormly distributed. The deformation of the third patient was
redominantly located in the liver, but with displacements
riented differently from the previous 2 patients. Our results
eem to suggest that organ deformation and displacement
re patient specific (47), which hinders the development of
common mathematical model for the respiratory process.
he deformation depends on anatomy and needs to be
etermined individually.

erformance of image coregistration
The performance of image coregistration is usually

valuated by using the checkerboard display and subtrac-
ion image. For the first case, the checkerboard images
efore and after registration for an axial, sagittal, and
oronal slice are presented in Fig. 4a. It is seen that
efore the image coregistration of CT0 –CT40, the move-
ents in these slices are as large as 8 mm. After the

eformable registration, the two images become almost
ndiscernible (Fig. 4b). The subtraction image between
he original CT0 and CT40 images shows large HU
ifferences in the liver and thoracic regions (Fig. 4c). The
ifference in the voxel intensity ranges from 0 to 875.
fter the deformable registration, the maximum differ-

nce is reduced to 250 HU (Fig. 4d). The differences
ppear mainly in the regions where the motion of small
tructures such as bronchi cannot be easily described by
he BSpline lattice. In Fig. 4e we plot the histograms of
he fractional voxel number for a number of HU differ-
nces. In addition to the fact that the initial maximum
ismatch of 875 HU is reduced to 250 HU, the number

f pixels having a large HU difference is dramatically
educed. For example, pixels with an HU difference greater

le registration algorithm. Presented is the normalized
or three different grid sizes (5, 10, and 15 nodes per
registration problems used in this work, namely between
egistration quality is assessed by the final values of the
cant improvements, whereas a further increase from 10
the final value of the metric.
ormab
step f
three

. The r
signifi
han 20 HU represent only less than 0.1% of the total number
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Fig. 3. Results from BSpline deformable calculation. (a) Representation of the grid nodes superimposed on lung
contours. (b) Visualization of resulting deformations. On each node, arrow length and orientation are proportional to
deformation magnitude and direction. (c, d) Same analysis for Patients 2 and 3 demonstrates that deformations are
patient dependent. (e) The node deformation can be interpolated to any location, such as the surface of an organ. In this
view, the lung surface extracted from CT0 is represented as surface, whereas homologs surface extracted from CT40
as points. The arrows represent deformations from CT0 to CT40 in random points on the lung surface. (f) The lung
surface at CT0 was deformed with the deformations presented in (e) to contour the lung surface at CT40. Color
represents contouring error, ranging from less than 1.5 mm on most of the surface to 5 mm observed only for small

regions of the bronchial tree, where the registration algorithm performs poorly.
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f voxels after the image coregistration. We anticipate a further
mprovement if more nodes are used. This gain is, of course,
chieved at the expense of an increased computational time.

For the last 2 patients, the registration results as assessed
y the checkerboard tool are presented in Fig. 5. Once
gain, excellent registrations were achieved between CT0

Fig. 4. Checkerboard display of the inhale and exhale pha
results show that the BSpline algorithm can properly mod
subtract images of the two phases before and after regis
of the image differences, large differences of up to 750 H
lung–liver interface. After registration, the difference is
nd CT40 images. s
mage interpolation
Comparison of the trajectories of implanted and surface
arkers in the interpolated and actual images affords an

ffective way to assess the performance of the proposed
mage interpolation scheme. In Fig. 6, we show the 4D
rajectories of all the markers for two different interpolation

before and (b) after deformable image registration. The
lung deformation caused by the respiratory motion. The
are shown in (c) and (d). (e) In the histogram analysis
eld units are observed initially for voxels located on the
d to 250 Hounsfield units.
ses (a)
el the

tration
ounsfi
chemes. The curves in the top row for each fiducial marker
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how the results derived from interpolating the CT0–CT40
egistration, along with the marker trajectories obtained
rom the actual 4D images (dots). The curves in bottom row
or each fiducial show the marker trajectories derived by
nterpolation from CT0–CT20–CT40. In the former case,
e found that the discrepancy of the marker positions in the

wo image sets was less than 3 mm. When the intermediate
D CT set, CT20, was added, the uncertainty was reduced
o less than 2 mm. It is sensible that the usage of an
ntermediate phase would lead to an improvement in the
nterpolation accuracy. In general, the determination of the
umber of image sets for image interpolation is a tradeoff
etween a few factors, notably the computational accuracy
nd convenience.

We have also assessed the interpolation scheme by track-
ng the surface of anatomic structures. In Fig. 7, we show

Fig. 5. Checkerboard comparisons of CT0 and CT40 fo
observed before registration. (b) After the deformable r
observable. (c, d) Similar results are obtained for the th
he 3D plot of the distance between some structural surfaces o
n the interpolated and actual CT10, CT20, and CT30 im-
ges for the 3 patients. To illustrate the utility of the struc-
ural surface distance plot, we have elected to display dif-
erent structures for different patients. We noted that, for the
rst patient (the first row of Fig. 7), a large error appeared
onsistently at the slices near the top of the liver, where
inning artifacts have been identified in the acquired im-
ges. Binning is not used to generate the interpolated im-
ges, making them artifact free.

Checkerboard display for the first patient, comparing the
nterpolated and actual images of CT10, CT20, and CT30, is
hown in Fig. 8. The two sets of images are highly similar,
ith virtually no difference visible in the checkerboard. The

ubtraction images for the same case are displayed in Fig. 9.
he histograms describing the differences in the voxel in-

ensities in the subtraction images are shown in the bottom

econd and third cases. (a) Discordance up to 8 mm is
tion, virtually no difference between the two images is
e.
r the s
egistra
f Fig. 9. Overall, no significant difference was observed
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etween the interpolated and actual images, and the major
iscrepancies occurred at the boundaries of small structures.

egmentation in 4D CT
The deformation between CT0 and CT40 can be used to

educe both images and contours at the intermediate phases.
urfaces delineated in CT0 were warped to CT10, CT20, and
T30, and the results are used in Fig. 10. Generally, the
ifference between the two complementary surfaces is less
han 3 mm, as illustrated for Patient 1 in the top row of Fig. 7
or the lung surfaces. Even for small structures such as the
rachea, the error was generally less than 5 mm (middle row of
ig. 7). The performance of the registration algorithm is inter-
sting, because it is commonly believed that a large number of

Fig. 6. Assessment of interpolation accuracy by track
coordinates as function of interpolation step. The positi
plotted together, with their correspondence deduced from
tion field from either direct CT0–CT40 registration (upp
all markers, maximum deviations are 3 and 2 mm, resp
odal points would be required to describe the deformation of c
uch small organs. Large error may also appear in a given set
f slices where the binning artifact was present.

To illustrate the application of the algorithm to deduce
umor motion, in Fig. 10 we present the sagittal contours
orresponding to CT20 and CT40, warped from the tumor
ontour delineated on CT0, overlaying on the background
mage (CT40). This application allows us to monitor the tumor
ath and shape changes as the patient breathes and helps us to
etter define the margin for radiation treatment.

DISCUSSION

In radiation therapy, respiratory motion poses significant
hallenges for treating tumors in the thorax or abdomen. It

trajectories of the implanted markers. Presented are
the markers in the acquired 4D images (red dots) are
terpolation of the deformation field (curves). Deforma-
or use of an intermediary phase CT20 (lower row). For

y.
ing the
ons of

the in
er row)
an distort the shape of an object, degrade the anatomic
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osition reproducibility during imaging, and necessitate
arger margins during radiotherapy planning. It also causes
naccuracy in estimating the tumor volume, thereby pre-
enting an effective dose escalation for the treatment of a
arget tumor. How to minimize its adverse effects on radi-
tion therapy represents a significant problem in achieving

Fig. 7. Assessment of interpolation accuracy by surfac
acquired images are color-coded representation. Presen
bronchial tree (second patient), and the diaphragm (thi
(red).
he goal of conformal radiation therapy. Four-dimensional n
T scans, acquired synchronously with a respiratory signal,
rovide not only the 3D spatial information, but also tem-
oral changes of the anatomy as a function of the respi-
atory phase during the imaging and can be employed to
uide the treatment planning to explicitly account for the
espiratory motion. The availability of 4D imaging tech-

parison. The error distances between interpolated and
e the lung and external contour of the first patient, the
ient). Color coding ranges from 0 mm (blue) to 7 mm
e com
ted ar
rd pat
iques thus provides a useful tool to better understand the
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hysiologic respiratory process and develop solutions to
he problem.

In this study we have extensively studied the interphase
orrelation of the images during the respiratory process and
resented a method to interpolate the 4D images based on a
ew sets of 3D images at different phases. The underlying
ssumption of the approach is that the patient’s anatomy at
ifferent phases can be related by using a deformable image
egistration model. Using a BSpline technique, we were
ble to interpolate the images at the intermediate phases to
ithin 3 mm even when only two sets of images at inhale

nd exhale phases were used.
The proposed technique may have three practical impli-

ations. First, by reducing the number of 3D image sets, the
adiation dose to the patient can be reduced significantly.

hen a modern multislice CT is used for a regular clinical
xamination, the dose received by the patient may approach
0 mSv for head and 20 mSv for the chest or abdomen. With
4D acquisition, because a patient is scanned multiple times

Fig. 8. A checkerboard comparison of interpolated and a
interpolated and actually acquired images are practically
t each couch position during the imaging, the radiation m
xposure will be considerably higher than the regular CT
can (up to 1 order of magnitude higher). Effective dose
eduction is thus highly desirable for clinical application of
he cutting-edge 4D CT scanning technology. With the
roposed interpolation scheme, the radiation dose to the
atient can be reduced by 50% to 80%, which may have
ignificant clinical implication.

Second, the technique reduces the requirement for stor-
ge disk space and may afford an effective method to
acilitate 4D CT data compression, storage, and retrieval.
he BSpline model used in this study provides a concise
nd artifact-free representation of the deformation field
nd the 4D images. The “decompression” of the image
an be realized by applying the deformation lattice on the
nitial CT image. Our experience has shown that the disk
pace usage can be reduced from 402 MB to 40 MB per
atient.
Finally, the model can be applied to interpolate contours

etween phases, providing an alternative to the optical flow

images for the phases of CT10, CT20, and CT30. The
ical.
cquired
ethods reported by other groups (27). To incorporate 4D
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T data into radiation treatment planning, a necessary step
s the delineation of the normal anatomic structures on the
ata sets. Because the segmentation process in 3D imaging
s already a tedious and labor-intensive process, it seems to
e impractical for clinicians to outline the structures slice by
lice and phase by phase. Because the voxel-to-voxel map-
ing between different phases is established during the
eformable registration, mapping of the segmented struc-
ure contours from one phase to another takes essentially no
dditional time.

Theoretically, there is no limitation in the number of
odes that can be used with the BSpline model, with an
xtreme case where one node is located in each voxel. Such

Fig. 9. Subtraction display of the interpolated and acquire
analysis of the differences in images (last row) documen
of the image pixels have a difference larger than 20 Ho
n extreme case should be able to model any trajectory and a
tructures as small as conceivable but would require opti-
ization of 45 million variables. In reality, a grid of 15

odes means 10,125 variables to be optimized, and a
small” increase to 20 nodes per dimension leads to 24,000
ariables, which pushes the calculation to the limit of the
urrent optimization algorithm. A realistic registration soft-
are should balance the number of nodes and the accuracy
f registration. Although there are a number of deform-
ble image registration algorithms, the BSpline technique
s known for its simplicity and reasonable accuracy. It is
preferred option, because the technique provides a good

radeoff between a number of practical factors. Other
ormalisms include, to name a few, fluid flow algorithm

es for the phases of CT10, CT20, and CT30. Histogram
ximum difference of 250 Hounsfield units. Only 0.01%
d units.
d imag
ts a ma
nd finite-element model. The fluid flow algorithm is
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etter suited for small deformations, which is hardly the
ase in 4D CT applications. The finite element model is
n principle most accurate, because it models the organ
otion based on real anatomic forces occurring in nature.
major drawback of the approach is that the elasticity

nd viscosity parameters that model the tissues/organs
re poorly known, hindering its practical application.
ecause the deformable image registration is a fast de-
eloping field, better and faster algorithms may be more
vailable in the future.

CONCLUSIONS

We have demonstrated the feasibility of using a BSpline
eformable image registration model to interpolate the in-
ermediate phases by starting from two or three sets of 3D
T images acquired at different phase points. The study

uggests that the organ deformation during the breathing
rocess can be well modeled by using a BSpline deformable
lgorithm. The proposed technique may find useful appli-
ations in reducing radiation dose, removing binning arti-
acts, generating images at a finer-phase resolution for better
valuation of the physiologic respiratory process, and de-

reasing the disk storage usage in 4D imaging.
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Abstract—Radiation therapy has gone through a series of revolutions in the last few decades and it is now
possible to produce highly conformal radiation dose distribution by using techniques such as intensity-modulated
radiation therapy (IMRT). The improved dose conformity and steep dose gradients have necessitated enhanced
patient localization and beam targeting techniques for radiotherapy treatments. Components affecting the
reproducibility of target position during and between subsequent fractions of radiation therapy include the
displacement of internal organs between fractions and internal organ motion within a fraction. Image-guided
radiation therapy (IGRT) uses advanced imaging technology to better define the tumor target and is the key to
reducing and ultimately eliminating the uncertainties. The purpose of this article is to summarize recent
advancements in IGRT and discussed various practical issues related to the implementation of the new imaging
techniques available to radiation oncology community. We introduce various new IGRT concepts and ap-
proaches, and hope to provide the reader with a comprehensive understanding of the emerging clinical IGRT
technologies. Some important research topics will also be addressed. © 2006 American Association of Medical
Dosimetrists.

Key Words: IGRT, Organ motion, Image guidance, Dose optimization, 4D imaging.

INTRODUCTION

Radiotherapy is an image-guided intervention, and im-
aging is involved in every key step of the process,
ranging from patient staging, simulation, treatment plan-
ning, and radiation delivery, to patient follow-up. The
evolution of radiation therapy has been strongly corre-
lated with the development of imaging techniques. Dur-
ing the early days when Roentgen first discovered x-rays,
2-dimensional (2D) transmission images of the human
body provided unprecedented imagery of bony land-
marks, which allowed radiologists to deduce the location
of internal organs. Using planar radiographs, radiologists
planned cancer treatments by collimating rectangular
fields that circumscribed the presumed tumor location.
Additional blocks placed daily to match marks on the
patient’s skin, and later using low-temperature-melting
dense alloys. The emergence of computed tomography
(CT) in the 1970s revolutionized radiation therapy and
allowed us to use image data to build a 3-dimensional
(3D) patient model and design 3D conformal radiation
treatment. In general, 3D conformal radiation therapy
(3DCRT) is a method of irradiating a tumor target vol-
ume defined in a 3D anatomical image of the patient with
a set of x-ray beams individually shaped to conform to
the 2D beam’s-eye-view (BEV) projection of the target.
The reduction in normal tissue irradiation when moving

from 2D to 3D should theoretically improve the thera-
peutic ratio and allow the tumor target volume to be
treated to a higher dose, thereby improving the probabil-
ity of tumor control. Recent technical advances in plan-
ning and delivering intensity-modulated radiation ther-
apy (IMRT) provide an unprecedented means for
producing exquisitely shaped radiation doses that closely
conform to the tumor dimensions while sparing sensitive
structures.1–3 The development of 3DCRT and IMRT
places more stringent requirements on the accuracy of
beam targeting. In practice, large uncertainties exist in
tumor volume delineation and in target localization due
to intra- and inter-organ motions. The utility of modern
radiation technologies, such as 3DCRT and IMRT, can-
not be fully exploited without eliminating or significantly
reducing these uncertainties. The need to improve tar-
geting in radiation treatment has recently spurred a flood
of research activities in image-guided radiation therapy
(IGRT).

While all radiation therapy procedures are image
guided per se, traditionally, imaging technology has pri-
marily been used in producing 3D scans of the patient’s
anatomy to identify the location of the tumor prior to
treatment. The verification of a treatment plan is typi-
cally done at the level of beam portals relative to the
patient’s bony anatomy before patient treatment. In cur-
rent literature, the term of IGRT or IG-IMRT is em-
ployed loosely to refer to newly emerging radiation plan-
ning, patient setup, and delivery procedures that integrate
cutting-edge image-based tumor definition methods, pa-
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tient positioning devices, and/or radiation delivery guid-
ing tools. These techniques combine new imaging tools,
which interface with the radiation delivery system
through hardware or software, and state-of-the-art
3DCRT or IMRT, and allow physicians to optimize the
accuracy and precision of the radiotherapy by adjusting
the radiation beam based on the true position of the target
tumor and critical organs. With IGRT, it is also possible
to take tumor motion into account during radiation ther-
apy planning and treatment. Because IGRT improves
precision, it raises the possibility of shortening the du-
ration of radiation therapy by reducing the number of
treatment sessions for some forms of cancer.

The purpose of this article is to highlight the recent
developments of various available imaging techniques
and present an overview of IGRT. Stanford experience
on various aspects of clinical IGRT will also be pre-
sented. We hope that readers will gain an overall picture
of IGRT and find it easier to navigate themselves through
the subsequent articles in this issue, which focus on
providing technical details and/or specific clinical appli-
cations of the available IGRT tools.

ISSUES IN IGRT

In current 3DCRT or IMRT, uncertainties exist in
many circumstances, such as tumor target definition,
patient immobilization, and patient breathing motion,
which make it difficult to administer a high radiation
dose to the planned location. The exact locations of the
boundaries of the tumor target and the adjacent sensitive
structures are often not known precisely, and a popula-
tion- and disease site-based safety margin is used rou-
tinely to cope with a problem that is otherwise insoluble.
An important task of IGRT is to eliminate or signifi-
cantly reduce the margins involved in defining the clin-
ical and planning target volume (CTV and PTV, respec-
tively).

Many IGRT solutions have been proposed to re-
solve the problem of target definition and beam targeting.
Briefly, IGRT developments are focused in four major
areas: (1) biological imaging tools for better definition of
tumor volume; (2) time-resolved (4D) imaging tech-
niques for modeling the intra-fraction organ motion; (3)
on-board imaging system or imaging devices registered
to the treatment machines for inter-fraction patient local-
ization; and (4) new radiation treatment planning and
delivery schemes incorporating the information derived
from the new imaging techniques. These are discussed in
more detail in the following.

TUMOR TARGET VOLUME DEFINITION

CT, MRI, and ultrasound (US) imaging techniques
To be able to “see” the extent of disease more

clearly and define the tumor target volume relative to the
patient’s anatomy have been among the most important
issues in radiation oncology. CT has played a pivotal role

in the process. Many radiation oncology departments
have acquired dedicated CT scanners. A typical patient’s
3D CT data set has more than 100 axial slices, each of
which contains 512 � 512 pixels. With 16 bits per pixel,
a CT data set can easily run over 50 megabytes. CT has
many advantages, including high spatial integrity, high
spatial resolution, excellent bony structure depiction, and
the ability to provide relative electron density informa-
tion used for radiation dose calculation. The recent de-
velopment of ultra-fast multi-slice CT has opened a new
dimension to CT technology and allows time-resolved
(4D) CT imaging of patient’s cardiac and breathing cy-
cles. Using array detectors, multisection CT scanners can
acquire multiple slices or sections simultaneously and
thereby greatly increase the speed of CT image acquisi-
tion. Currently, all manufactures are moving toward 8-,
16- and even higher slice CT technology. Radiation
oncology application of 4D CT will be discussed later.

MRI provides superior soft tissue discrimination,
especially for central nervous system (CNS) structures
and within the abdomen and pelvis, and has been widely
used in the diagnosis and tumor delineation. MRI is also
utilized for virtual simulation of radiation treatment for
some specific disease sites. Physically, MRI involves the
determination of the bulk magnetization of nuclei within
a given voxel through use of radio-frequency (RF) radi-
ation and magnetic fields. In a clinical setting, MRI is
typically employed together with CT images with the
help of image fusion software to delineate the extent of
the malignancy. As with other imaging techniques, MR
technology has gone through a series of revolutions in
the past 3 decades. MRI technology is moving toward
higher field strengths to further improve the quality of
MR images, as evidenced by the installations of 3T
scanners in many institutions (9.4 T MRI scanners have
been installed in a few institutions). Fast-cine MRI is
also becoming increasingly available and may offer phy-
sicians an alternative for imaging the temporal process of
patient breathing or even heart beating. Figure 1 shows
an example of MRI images acquired at 2 different phases
for a liver cancer patient. In addition, the development of
some specialized MRI scans has also attracted much
attention. These include diffusion and perfusion MRI,
dynamic contrast MRI, MR angiography, MR spectro-
scopic imaging (MRSI), and functional MRI (fMRI).
The recent development of diffusion tensor imaging
(DTI), for instance, enables diffusion to be measured in
multiple directions and the fractional anisotropy in each
direction to be calculated for each voxel. fMRI measures
signal changes in the brain that are due to changing
neural activity. These techniques enable researchers to
make axonal and functional maps to examine the struc-
tural connectivity of different regions in the brain and
may allow better definition of brain tumors and better
sparing of sensitive regions.4

Ultrasound (US) is another useful imaging modality
for radiation therapy. US utilizes high-frequency (1�10
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MHz) sound waves to generate anatomical images that
have high spatial resolution and tissue characterization
discrimination power through image texture analysis. In
radiation therapy, it has been particularly useful in pros-
tate imaging. Transrectal US permits an examination/
localization of the prostate gland5,6 and is the imaging
modality of choice in guiding the prostate seed implant
procedure.

Biological imaging
Regardless of the course of therapy, current stan-

dard imaging modalities such as CT and MRI do not
always provide an accurate picture of the tumor extent,
especially in the zone of infiltration that may be the
limiting factor in an attempt of a radical treatment ap-
proach. This has been shown to be the case for gliomas
before surgical intervention. It is also true when attempt-
ing to determine the volume of residual tumor for addi-
tional therapy owing to problems in differentiating post-
therapy changes from residual tumor. Indeed, the above-
mentioned imaging modalities are anatomic in nature,
i.e., they provide snapshot of a patient’s anatomy without
biological information of various organs or structures.
Biological imaging, defined as the in vivo characteriza-
tion and measurement of biological processes at the
cellular and molecular level, is an emerging multidisci-
plinary field resulting from the developments of molec-
ular biology and diagnostic imaging and shows signifi-
cant promise to revolutionize cancer detection, staging/
re-staging, treatment decision-making, and assessment of
therapeutic response. MRSI and positron emission to-
mography (PET) are 2 valuable modalities for radiation
therapy planning. 1H MRSI combines the advantages of
obtaining biochemical data by water-suppressed 1H MR
spectroscopy with the spatial localization of that data.
MR spectroscopy is useful in characterization of brain
and prostate tumors. In the brain, for example, malignant
tumors have an increased rate of membrane turnover
(increased level of choline) and a decreased concentra-
tion of neurons. Furthermore, spectroscopy allows for
the noninvasive monitoring of the response of residual
tumor to therapy and for differentiating tumor recurrence

from tissue necrosis. Recently, Pirzkall et al.7 have ap-
plied multi-voxel MRSI to assess the impact of MRSI on
the target volumes used for radiation therapy treatment
planning for high-grade gliomas. It was found that, al-
though T2-weighted MRI estimated the region at risk of
microscopic disease as being as much as 50% greater
than by MRSI, metabolically active tumor tissue still
extended outside the T2 region in 88% of patients by as
much as 28 mm. In addition, T1-weighted MRI suggested
a lesser volume and different location of active disease
compared to MRSI. The discordance of high-grade-gli-
oma target volumes resulting from MRI was also ob-
served in other functional imaging modalities such as
(PET) and single-photon emission computed tomogra-
phy (SPECT).

While there is a growing body of evidence now
indicating that in vivo MRSI provides unique informa-
tion on metabolism that will ultimately affect clinical
diagnosis, choice and monitoring of therapies, and treat-
ment planning, in reality, MRSI has mainly remained a
research tool confined to a small number of academic
institutions.8–12 PET, on the other hand, is more widely
used and has been harnessed into the planning process in
many clinics. In general, PET has lower image resolu-
tions than CT images and, with commonly used fluorine-
18-labeled deoxyglucose (FDG) tracer, contains no ana-
tomic information about normal structures. Information
derived from PET needs to be fused with the correspond-
ing CT images for treatment planning. The fusion of PET
and CT images are simplified with the use of the hybrid
PET/CT scanner.13,14 Figure 2 shows the data flow of a
typical PET/CT scanner.

Hybrid PET/CT systems have several positive fea-
tures that are absent in stand-alone PET and CT units.
PET/CT is a hardware-based image-fusion technology
that virtually eliminates the uncertainty and inconve-
nience of currently available software fusion of separate
PET and CT images, which are often acquired with
patients in different positions. It should be emphasized
that the PET/CT unit is not simply a PET and CT
combination—not from the perspective of system design,
nor the practical utility. Other than the fact that one does

Fig. 1. Cine MR images at inhale and exhale phases for a liver cancer patient.
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not have to go through the cumbersome and time con-
suming software fusion process, it has the advantages of
simultaneous availability of the fused images, conve-
nience to the patient and the physician, increased physi-
cian confidence in interpreting the image findings, and
�30% of reduction in PET scanning time due to the use
of CT data for PET attenuation correction.

Integration of biological imaging techniques and
multimodality image fusion

FDG-PET provides a means to study metabolic
activity of tumors in vivo. Initial studies incorporating
FDG-PET into treatment planning have been report-
ed.15–17 Bradley et al.17 have carried out a prospective
study to determine the impact of functional imaging with
FDG-PET on target volumes among non-small cell lung
cancer (NSCLC) patients being considered for definitive
radiation therapy. They found that radiation targeting
with fused FDG-PET and CT images resulted in alter-
ations in radiation therapy planning in over 50% of
patients by comparison with CT targeting. The changes
included the alterations in the AJCC TNM stage (31% of
the patients studied) and modification of target volume
(58% of the patients studied). In a separate study, Mac-
Manus et al.16 reported that 30% of patients with locally-
advanced NSCLC became ineligible for curative radio-
therapy because of detection of either distant metastatic
disease or intrathoracic disease too extensive for radical
radiation. Recently, Howard et al.18 have studied the
value of FDG-PET/CT for esophagus cancer and re-
ported similar findings.

Emerging PET tracers for oncologic imaging
While FDG-PET has been shown to be effective for

a number of malignancies, imaging of many other neo-
plasms, such as breast cancer and prostate cancer, with
FDG has shown less success.19,20 Many pitfalls have
previously been described with FDG-PET imaging. The

FDG tracer can be nonspecifically taken up by several
benign conditions such as inflammatory disease, pneu-
monia, brown fat, muscle, bowel uptake, and granulo-
matous disease. Also, slow-growing indolent tumors
may exhibit only a mild increase in glucose metabolism
and therefore be missed by FDG-PET.21–23 Thus, FDG-
PET is only minimally useful for the evaluation of indo-
lent tumors such as organ-confined prostate cancer. The
recent development of fluorothymidine (FLT)24–26 pro-
vided a new opportunity to improve the sensitivity and
specificity of PET imaging of cancer. Because there is
upregulation of thymidine transport into malignant cells
due to accelerated deoxyribonucleic acid synthesis, ei-
ther 11C or 18F-labeled thymidine radiotracers can be
used to determine cellular proliferation. Several studies
have shown that the accumulation of FLT correlates
better with proliferation in comparison with the com-
monly used FDG tracer.25,26 Recently, Smyczek-Gargya
et al.27 have reported FLT-PET imaging experiments
involving 12 patients with 14 primary breast cancer
lesions (T2–T4). Thirteen of the 14 primary tumors dem-
onstrated focally increased FLT uptake. The study
showed that FLT-PET is suitable for the diagnosis of
primary breast cancer and locoregional metastases and
the high image contrast of the technique may facilitate
the detection of small foci.

Agents, such as antisense molecules, aptamers, an-
tibodies, and antibody fragments, can be aimed at mo-
lecular targets for biological imaging. Tumor receptors
and certain cellular physiologic activities, including me-
tabolism, hypoxia, proliferation, apoptosis, angiogenesis,
and infection, provide such targets. In addition to FLT,
there are several other new nuclide imaging tracers under
clinical or laboratory investigations,21,28–35 which in-
clude, to name a few, 11C-Acetate,36–38 18F-choline,39,40

11C-choline,41,42 64Cu-DOTA-Bombesin43, 18F-FMISO,44,45

18F-FAZA,46 64Cu-ATSM.47 For example, carcinogene-
sis is often characterized by enhanced cell proliferation

Fig. 2. Schematic drawing of the data flow in a hybrid PET/CT.
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and transformation, and elevated levels of choline and
choline kinase activity in certain neoplasmic dieases
have motivated the development of positron-labeled cho-
line analogs for noninvasive detection of cancer using
PET.41 Choline acts as a precursor for the biosynthesis of
phospholipids, e.g., phosphoatidylcholine, the major
components of cell membrane. Several preliminary stud-
ies have demonstrated the potential of the new tracer for
prostate cancer and many other cancers.37,41,48

Biologically conformal radiation therapy (BCRT)
The current 3DCRT or IMRT inverse planning is

typically aimed at producing a homogeneous target dose
under the assumption of uniform biology within the
target volume. In reality, it is well known that the spatial
biology distribution (e.g., clonogen density, radiosensi-
tivity, tumor proliferation rate, functional importance) in
most tumors and sensitive structures is heterogeneous.
Recent progress in biological imaging is making the
mapping of this distribution increasingly possible. This
new development opens a new avenue of research,
coined BCRT.49–53 The goal of BCRT is to take the
inhomogeneous biological information derived from bi-
ological imaging into account and to produce customized
nonuniform dose distributions on a patient specific basis.
The simultaneous integrated boost (SIB) to elective vol-
umes recently appearing in the literature represents a
simple example of BCRT.

To establish BCRT, 3 major aspects must be ad-
dressed: (1) determination of the distribution of biolog-
ical properties of the tumor and critical structures; (2)
prescription of the desired dose distribution for inverse
planning; and (3) inverse planning to generate most
faithfully the prescribed nonuniform dose distribution.
While the development of molecular imaging techniques
is critically important in mapping biology distributions,

the successful integration of this information into IMRT
planning through steps (2) and (3) is also indispensable
to fully exploit the obtained biology information to im-
prove patient care. With the optimistic assumption that
spatial biology distributions within a patient can be reli-
ably determined using biological imaging in the future,
Yang and Xing53 have established a theoretical frame-
work to quantitatively incorporate the spatial biology
data into IMRT inverse planning. To implement this
method, they first derived a general formula for deter-
mining the desired dose to each tumor voxel for a known
biology distribution of the tumor based on a linear-
quadratic (LQ) model. By maximizing the TCP under the
constraint of constant integral target dose, they obtained
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where D0
T(i) is the desirable prescription dose at the voxel

i with the tumor cell density, radiosensitivity, and pro-
liferation rate given by (�i, �i, �i), and Dref is the refer-
ence dose for the voxel with reference radiobiological
parameters (�ref, �ref, �ref). For a given disease site, the
radiation dose used in current clinical practice with “in-
tent to cure” can be used as a good starting point in
selecting the value of Dref. The relation is quite general
and can be used as prescription dose to guide an arbitrary
inverse planning objective function aimed at producing a
customized dose distribution in accordance with the spa-
tial biology information.

INTRA-FRACTION ORGAN MOTION:
MANAGING THE RESPIRATORY MOTION

Components affecting the reproducibility of target
position during and between subsequent fractions of ra-
diation therapy include the displacement of internal or-
gans between fractions and internal organ motion within
a fraction. Depending on the disease site, these compo-
nents contribute differently to the margins that are to be
added around the CTV to ensure adequate coverage. In
the thorax and abdomen, intra-fraction internal anatomy
motion due to respiration is a principal cause for large
safety margins. Motion can distort target volumes and
result in positioning errors as different parts of the tumor
move in and out of the image window with the patient’s
breathing cycle. Several studies, conducted to examine
the extent of diaphragm excursion due to normal respi-
ration, reported the range of motion from �0.5 to 4.0 cm
in the superioinferior direction. As a consequence of a
significant margin added around the CTV, a large
amount of normal tissue surrounding the CTV is irradi-
ated. Accounting for such motion during treatment has
the potential to reduce margins, leading to reduced radi-
ation toxicity and risk of treatment-induced complica-
tions, and yielding room for dose escalation.

Fig. 3. Example of 4D CT where respiratory cycle irregularities
have produced significant interbed mismatches near the base of

the lung.

Image-guided radiation therapy ● L. XING et al. 95



A complete solution compensating for respiratory
motion should ideally start at the simulation stage. There
have been several studies to characterize the amplitude,
phase and periodicity of organ motion54–56 using fluo-
roscopic x-rays, ultrasound,57,58 and magnetic or RF
markers.59,60 The development and deployment of spiral
and multi-detector CT scanners have made practical the
acquisition of time-resolved or 4D CT images. The re-
constructed images acquired with patients in treatment
positions provide 4D models upon which geometric as
well as dosimetric computations can be performed. 4D
PET is also becoming clinically available.61–63 Treat-
ment-wise, respiratory gating technology and tumor
tracking techniques to synchronize delivery of radiation
with the patient’s own respiratory cycle are under inten-
sive investigations.

4D CT imaging
A 4D CT can be either prospective or retrospective.

In the former case, the scanner collects images at only
one of the breathing phases of the patient instead of
scanning continuously. The retrospective 4D CT scan
results in multiple image sets, corresponding to different
breathing phases of the patient, and consists of 3 rela-
tively orthogonal processes64–68: recording of respira-
tory signal(s), acquisition of time-dependent CT projec-
tion data, and construction of a 4D image from these
data. The first objective can be achieved by tracking a
surrogate of respiration-related organ and tumor motion,
such as tidal volume measured with a spirometer,66,69

chest expansion monitored by a pneumatic bellows,70 or
a reflecting external marker placed on the abdomen and
tracked with a camera.64 Time-dependent CT data can be
acquired by oversampling in either helical or cine mode,
and constructing several CT slices over the full respira-
tory cycle at each axial location.67,71 Finally, the respi-
ratory signal and CT data must be combined into a 4D
series, providing a CT volume at several points through-
out the respiratory cycle. In this section, we will focus
primarily on the implementation of 4D CT provided by
the Varian Real-time Position Management (RPM) cam-
era/software and the GE Discovery ST multislice
PET/CT scanner.

4D CT patient setup proceeds along the same lines
as a standard 3D CT exam. The patient is immobilized on
the scanner bed, and aligned using room and scanner
lasers. Sagittal and coronal scout images are used to
verify patient positioning, and the setup is adjusted as
necessary. At this stage of the setup, the 4D procedure
begins to diverge from the 3D exam.

The RPM system consists of an infrared source,
CCD camera, and a reflecting block. The block is at-
tached to the patient’s abdomen, typically just inferior to
the xiphoid process, and the anterioposterior motion of
the block is captured by the camera. This motion is
analyzed in real-time by Varian software on a computer
connected to the RPM camera. The breathing pattern is

recorded for the duration of the scan, and is referred to as
the “respiratory trace.” Once the scan has finished, the
software retrospectively computes the phase at each
point of the respiratory trace by determining the location
of the peaks at end-inspiration, and assigning percent-
ages to interpeak points based on a linear interpolation of
the peak-to-peak distance. For example, under this
scheme, end-inspiration occurs at 0%, while end-
expiration typically appears near 50–60%. The peak-to-
peak distance can vary between respiratory cycles, as can
the position of end-expiration with respect to end-
inspiration.

Irregularities in a patient’s respiratory pattern can
often be reduced by encouraging the patient to breathe
calmly and consistently, and then relying on the patient’s
compliance during the scan. If this free-breathing ap-
proach is insufficient, the RPM software can provide
audio coaching in the form of a “breathe in, breathe out”
recording, which is manually or automatically timed to
the patient’s natural rhythm. Some groups have used
video feedback either alone or concurrently with audio
instructions.72 While audio and video coaching can help
by stabilizing the respiratory period, amplitude and base-
line, they can complicate matters for patients with com-
promised respiratory function, who find it difficult or
impossible to maintain a regular rhythm. Another solu-
tion is active breath control (ABC)73–75 which uses mod-
ified ventilator equipment to control the airflow, albeit at
the (possibly significant) expense of patient comfort.

Once a sufficiently regular breathing pattern has
been established, the CT data is acquired in “cine” mode.
This is a step-and-shoot technique, whereby the gantry
rotates several times at each bed position to acquire data
over the full respiratory cycle. The raw data is partitioned
into bins corresponding to a user-selected time interval
(typically less than 1/10th the average cycle), and CT
slices are automatically reconstructed from these bins.
Because several respiratory points are sampled at each
bed position, a 4D CT scan can take several times as long
as a corresponding 3D CT, resulting in typically 1500–
3000 CT slices for a 20–40-cm axial FOV.

The respiratory and scan data are combined at a
separate computer, the Advantage Workstation (AW)
(GE Medical Systems), which uses the respiratory trace
to sort the oversampled CT slices according to their
phase. The AW does perform the phase calculations, but
rather relies on the phase stamp computed by the RPM
during the creation of the respiratory trace file. Missing
phases for any couch position are replaced with their
nearest neighbor, providing a sorted image without any
phase gaps. The user can navigate through the data in
each axial direction, similar to standard viewing soft-
ware, but can also scroll through the respiratory phases
from end-inspiration to end-expiration. Individual phases
can be subsequently extracted, or combined into aver-
aged or minimum/maximum intensity projections, and
exported to planning software in the form of standard
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DICOM series. These exported image series form the
basis of 4D treatment planning.

Unresolved issues in 4D CT
The AW sorts the data by phase rather than ampli-

tude. If the breathing were perfectly regular from cycle to
cycle, then phase- and amplitude-based sorting would
give very similar results. The problem arises when there
is variation in amplitude, period, or baseline, or when the
onset of end-expiration does not occur at the same point
each cycle. When these inconsistencies arise, the sorted
CT images may contain mismatch artifacts at the inter-
face between bed positions (see Fig. 3). Recent studies
have investigated amplitude-based binning as an alterna-
tive to the phase-based approach, and it appears that
amplitude sorting can improve image quality in many
cases.76–78 Other researchers have matched adjacent CT
slices without using a respiratory trace, by maximizing
the continuity of CT units integrated over regions of
interest.71 Yet another promising approach involves in-
terpolating the CT data continuously between end-cycle
peaks using deformable models.79

A second issue arises in the correlation between
external fiducial movement and tumor/organ motion.
Amplitude ratios between fiducial and tumor displace-
ment may vary from cycle to cycle, and thoracic and
abdominal points may involve relative phase shifts.54,80

These shifts may be especially crucial for tumors near
the lung, where hysteresis is prevalent. Finally, larger
organs such as the liver can experience substantial de-
formation during inspiration and expiration, which may
not be adequately captured by rigid-body interpolation
between points in the respiratory cycle

Finally, even if the 4D CT images have been ac-
quired without problem, there remains the issue of re-
producibility at treatment.81 If treatment planning and
delivery are based on 4D CT, there is an implicit as-
sumption that anatomic motion during treatment will
match the tumor and organ motion observed during
setup. This assumption can be checked to some degree
through frequent gated or breath-hold portal imaging.82

On the other hand, it is reasonable to assume the patient
will relax over time, so that their breathing becomes
shallower or changes tempo. Indeed, studies have dem-
onstrated that some patients exhibit systematic respira-
tory changes over a several-week course of radiation
therapy, even with visual and audio coaching.83 These
issues strike at the heart of IGRT, and provide a fertile
ground for research.

4D CT usually delivers more radiation dose than the
standard 3D CT, because multiple scans at each couch
position are required to provide the temporal informa-
tion. We have developed a method to perform 4D CT
scans at relatively low current, hence reducing the radi-
ation exposure of patients.68 To deal with the increased
statistical noise caused by the low current, we proposed
a novel 4D penalized weighted least square (4D-PWLS)
smoothing method, which can incorporate both spatial
and phase information. The 4D images at different
phases are registered to the same phase via a deformable
model, whereby a regularization term combining tempo-
ral and spatial neighbors is designed. The proposed
method was tested with phantom experiment (see Fig. 4).
for an example) and patient study, and superior noise
suppression and resolution preservation were observed.

4D PET and related issues
4D PET poses a problem distinct from 4D CT, in

that signal is inherently limited by the tolerable patient
dose. The result is that any PET scan requires a signifi-
cant amount of time per bed position (usually a few
minutes) to acquire sufficient data to produce a good
image. This limitation makes it difficult to partition PET
data with the same time resolution possible in 4D CT, but
nonetheless, acquisition methods are clinically available
to obtain PET images at end-inspiration or end-
expiration. The most common solution is to gate the PET
scan at the desired respiratory end-point, and reconstruct
a single bin of gated data.84–86

Patient setup proceeds in the same manner as an
ungated PET scan, and a CT image is acquired for
attenuation correction just prior to the PET. At this point,
the RPM system monitors patient breathing by tracking
the reflecting block, and the acquisition trigger is set by
the user to occur at some given point (say, end-
inspiration) in the cycle. Each time the RPM camera
determines that the reflecting block (and, by extension,
the patient’s respiration) reaches this point in the respi-
ratory cycle, a trigger is sent to the scanner, and data
accumulation is initiated. Gated PET differs fundamen-

Fig. 4. Motion phantom study for the 4D-PWLS method with
the thorax phantom. The left and middle columns are the
original phases obtained from the GE Advantage Workstation,
for 100 mA and 10 mA, respectively; the right column shows
the 10-mA phases after 4D-PWLS processing. The red rectan-
gles represent the selected ROI for calculation of SNRs, each of
which contains 5 � 5 � 5 voxels. PWLS smoothed 10-mA
scan resulted in more than 2-fold increase in the SNR for every
phase of the periodically moving phantom. Similar results were

obtained in a patient 4D CT study.
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tally from the 4D CT protocol, by elevating the RPM
system to this active role in data acquisition.

In gated mode, the user is able to select both the
width of the acquisition window and the number of
sequential bins to record each respiratory cycle. The bin
width directly affects image quality, because the signal-
to-noise ratio within an image asymptotically approaches
the square root of the signal level.87 Multiple bin acqui-
sition allows the capture of the full respiratory cycle in
several bins, offering the possibility of retrospectively
sorting into 2 or more respiratory phases. Each time the
RPM trigger is received, data is directed to the initial bin,
and then to the remaining bins sequentially until the next
trigger. This process continues for the duration of the
scan. Ideally, the scan duration would be chosen such
that the first bin (the respiratory point of most interest)
would accumulate as many data points as a comparable
ungated scan (i.e., divide the bin width by the duty
cycle). In reality, because this would lengthen the typical
PET scan by a factor of 4 or 5, practical clinical consid-
erations may require the gated scan to be shortened, with
corresponding image degredation.

Once the scan has finished, it is possible to associate
each bin (beyond the first bin) with a corresponding point
in the respiratory cycle. Because the respiratory trace is
recorded by the RPM, it is a relatively simple matter to
analyze the respiratory motion offline and make this
correspondence. It is also possible to retrospectively
combine multiple bins into a single bin, merging all the
data to create an effectively ungated scan. However,
these methods are not yet available from the vendor as a
clinical tool, and must be performed by the user in the
context of research efforts. Once the desired bin has been
selected, its data can be reconstructed using the vendor-
supplied filtered backprojection or OS-EM algorithms.
The image results can subsequently be exported to treat-
ment planning systems for review, similar to ungated
PET series.

A salient point in the PET reconstruction process
is the specification of the attenuation correction map.
The current clinical design uses the CT scan acquired
just prior to the PET specifically for this purpose. This
attenuation correction CT can be an acquired during
either free breathing or breath-hold. Some research
has indicated that PET reconstructions can be quite
sensitive to distortions in the attenuation correction
map,88 –90 and investigations are ongoing into the use
of 4D CT or other models to accurately account for
attenuation.61,91 On the Varian/GE system, this re-
quires selecting the appropriate images from the 4D
CT on the AW, sending these series back to the
scanner, generating the attenuation correction maps
for each 4D PET bin, and then reconstructing each bin
separately. Once again, this is a research solution, and
not yet available from the vendor for clinical use.

Combining 4D PET with 4D CT and enhancement
of the performance of 4D PET with post-acquisition
data processing

Once the 4D PET has been acquired (either a single
phase, or perhaps several), it is possible to create a 4D
PET/CT.61 This involves manually selecting the PET and
CT images with corresponding respiratory phases (or
amplitudes), and fusing them on viewing/planning soft-
ware. We have recently developed a 4D-4D image reg-
istration algorithm, which allows us to automate the
process. If the CT and PET scans are acquired with the
same patient position on the same exam, then the process
is a particularly simple hardware-based registration. On
the Eclipse treatment planning system, for example, 2
images (not just PET/CT, but other modalities as well)
can be automatically fused if they share the same
DICOM coordinates. If the DICOM coordinates are not
identical, the registration is more difficult, requiring
manual or automated shifts and rotations to match ana-
tomical landmarks or fiducials. Fusion may be addition-
ally complicated by organ deformation92,93(see Rigid
and Deformable Image Registration Section below). At
the present time, PET/CT hardware fusion for ungated
scans is well established and readily available within the
clinical setting.13,14 4D PET/CT registration, however,
remains primarily within the research domain.

The major issue in 4D PET is the lack of statistics.
Because the collected photons are divided into several
frames, the quality of each reconstructed frame is de-
creased with increasing number of frames. The increased
noise in each frame heavily degrades the quantitative
accuracy of the PET imaging. We have recently devel-
oped 2 corrective methods to enhance the performance of
4D PET. The first method, coined “retrospective” stack-
ing (RS),62,63,94 combines retrospective amplitude-based
binning of data acquired in small time intervals, with
rigid or deformable image registration methods. Unlike
gating techniques, RS uses data along the entire respira-
tory cycle, thereby minimizing the need for lengthened
scans while providing a 4-dimensional view of the region
of interest.62,63 In the second approach,94 we reconstruct
each frame with all acquired 4D data by incorporating an
organ motion model derived from 4D-CT images by
modifying the well-known maximum-likelihood
expectation-maximization (ML-EM) algorithm. During
the processes of forward- and backward-projection in the
ML-EM iterations, all projection data acquired at differ-
ent phases are combined together to update the emission
map with the aid of the deformable model, the statistics
are therefore greatly improved. Both phantom and pa-
tient studies have indicated promising potential of the 2
methods.

Radiation treatment planning based on 4D information
How to maximally utilize the time-resolved image

information derived from 4D CT or PET/CT represents
one of the challenges in IGRT. In reality, the information
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can be integrated into radiation treatment planning and
delivery at different levels. At the lowest level, the 4D
images can be employed to determine the extent of tumor
movement on a patient specific basis and the information
can then used to design the CTV margin and the radia-
tion portals to accommodate the motion. Figure 5 shows
an example of lung patient, in which tumor boundaries at
3 distinct respiratory phases are plotted. We have re-
ferred to this type of treatment as “3.5-dimensional”
radiation therapy. The 4D information can also be used
for guiding breath-hold or gated radiation therapy. There
is also strong interest in using the 4D data to establish a
4D patient model and then to carry out a 4D radiation
therapy plan. These are the subjects of the following 2
sub-sections.

Breath-hold and respiratory gating
Various methods have been worked out to counter-

act respiratory motion artifacts in radiotherapy imaging.
Among them are breath-hold, respiration gating, and 4D
or tumor-tracking techniques.55,56,73,75,95 Breath-hold
techniques either actively or passively suspend the pa-
tient’s respiration and treat the patient during this inter-
val. Deep inspiration breath-hold, active breathing con-
trol (ABC) (which forces shallow breathing and thereby
“freezes” the tumor motion for a small part of the treat-
ment time73), and self-held breath-hold are suitable for
different types of therapy targeting different cancers.
Different types of equipment, such as stereotactic
frames, fiducial tracking systems, timers, respirometer,
RPM, or interlocks, may be needed depending on the
method of breath-hold.

Respiration-gating methods involve tracking the pa-

tient’s natural breathing cycle and periodically turning
the beam on when the patient’s respiration signal is in a
certain phase of the breathing cycle (generally end-inhale
or end-exhale). The patient’s respiration is continuously
monitored and the beam switches off as the tumor moves
out of the target range. Gated radiation therapy can offset
some of the motion but requires specific patient partici-
pation and active compliance. In gated treatment, it is
required that the CT images used for treatment planning
faithfully represent the actual treatment situation. While
gated CT acquisition at the treatment respiratory phase is
possible, our gating protocol proceeds by picking up the
CT data at an appropriate phase from the patient’s 4D CT
acquired using the method described above. The gating
interval is typically centered at end-expiration because of
the increased reproducibility at this point, and spans
20–30% of the breathing period to provide a reasonable
duty cycle. Treatment plans are optimized for this phase
range by planning on an averaged composite of the scans
within the interval, and using maximum- and minimum-
intensity pixel views to incorporate intra-gate margins.
The averaged, maximum-intensity and minimum-
intensity composites for a lung patient are displayed in
Fig. 6.

Tumor tracking
Similar to the establishment of a 3D geometric

modeling based on traditional CT data, the availability of
4D imaging information makes it possible to build a
patient specific 4D model. Figure 7 shows the the 4D
model for a lung patient.79 In obtaining the models, a
BSpline deformable registration technique (see Rigid
and Deformable Image Registration section below) was
used to register different phases of the 4D CT. Ideally,
organ motion represented by the 4D model can be incor-
porated into the radiation treatment plan optimization to
overcome the adverse effect of respiratory motion on
IMRT delivery.96 A few groups95–100 have explored the
feasibility of MLC-based tumor tracking. However, the
interplay between different phases has been ignored dur-
ing the plan optimization in most of these studies. Webb
has presented a technique to model the dosimetric effect
of elastic tissue movement when modulated beams are
delivered.101 In general, the quadratic inverse planning
objective function becomes
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where dp
k is prescribed dose for kth structure, wk is the

importance factor, and di
k (r�, t) is the calculated dose in

voxel i at time t, and the summation over t represents the
integral dose to ith voxel. For 4D planning, it is neces-
sary to know the path of each material coordinate during
the treatment, which involves registering the voxels in
different respiratory phases. This can be achieved by
using a deformable registration algorithm. The optimi-
zation of the above objective function or alike95,102–106

Fig. 5. Tumor contours for 3 breathing phases. The contours
labeled as CT20 and CT 40 were produced by applying the
deformation field on the tumor contours delineated in CT0. The
“trajectories” of the tumor boundary pictorially show the extent
of tumor movement and allow us to specify patient specific

margin in accounting for the intra-fraction organ motion.
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can proceed in a similar fashion as conventional 3D
inverse planning to derive the optimal trajectories of the
movements of the MLC leaves. An aperture-based opti-
mization107–109 seems to be more adequate for dealing
with the organ motion.96

4D methods propose to track the tumor with the
radiation beam as the tumor moves during the respiration
cycle. These techniques require acquisition of some form
of respiration signal (infrared reflective markers, spirom-
etry, strain gauges, video tracking of chest outlines, and
fluoroscopic tracking of implanted markers are some of
the techniques employed to date), which is assumed to be
correlated with internal anatomy motion. Fluoroscopy
and the cine model electronic-portal-imaging device
(EPID) have been proposed as a means for real-time
guidance.110,113 While tumor tracking seems to be the
ultimate goal of 4D radiation therapy, the real challenge
is clarifying whether the 4D model is repeatable at the
time of fractionated treatments, and determining how to
correctly synchronize the MLC movements with the pa-
tient breathing. Real-time imaging and/or adaptive ap-
proaches will likely play a role in this aspect and the
issue will surely need more research for many years to
come.

INTER-FRACTION ORGAN MOVEMENT

Current techniques in dealing with inter-fraction organ
movement

Uncertainty in patient setup has long been known as
a limiting factor to conformal radiation therapy. Cur-
rently, the accuracy of patient setup is verified by mega-
voltage (MV) radiograph acquired with either radio-
graphic film or EPID.114,115 The patient’s bony
landmarks are used to guide patient alignment. Poor soft
tissue contrast and often unclear projection of the bony
anatomy are major problems of the approach. To im-
prove the situation, planar kV x-ray imaging has been
implemented in a variety forms.110–113 While these sys-
tems show significantly increased contrast for bony
structure differentiation, observing soft-tissue detail re-
mains problematic and correction of daily organ motion
is still challenging. Attempts have been made to use CT
imaging to facilitate the patient setup process. Along this
line, the offline adaptive-radiation-therapy (ART) strat-
egy116 and in-room CT approach117 have been studied.
The former method aims to partially compensate for
organ motion by carrying out multiple CT scans in
consecutive days in the first week of treatment. The
image data are then employed to construct a patient
specific PTV model from the composite of the CTVs
with inclusion of statistical variations of the observed
motions. While beneficial, the approach is hardly an
ideal solution for dealing with the inter-fraction organ
motion. It relies on establishing a statistical ensemble of
all possible setup scenarios under a strong assumption
that a limited number of off-line CT scans can ade-

Fig. 6. Composite scans of a 4D CT lung patient. (a) Average
pixel; (b) maximum-intensity pixel; (c) minimum-intensity
pixel. The maximum-intensity pixel composite reveals the mo-
tioextent of hyperdense tissue (e.g., lung tumor), while the
minimum-intensity pixel view provides the motion range of

hypodense regions (e.g., lung air volume).
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quately describe the inherently complex, often unpredict-
able inter-fraction organ motion. Even when it is achiev-
able, the ART margin is not optimized on a daily basis
and there is still room for further improvement. An
integrated CT/LINAC combination, in which the CT
scanner is located inside the radiation therapy treatment
room and the same patient couch is used for CT scanning
and treatment (after a 180° couch rotation), should allow
more accurate correction of interfractional setup errors.
Some major radiotherapy vendors provide options to
install a CT scanner in the treatment room. The overall
precision of EXaCT Targeting™ from Varian has been
evaluated by Court et al.117 However, the approach as-
sumes a fixed relationship between the LINAC isocenter
and the CT images and relies heavily on the mechanical
integrity of the 2 otherwise independent systems. In-
creased capital cost and prolonged imaging and treat-
ment are other concerns.

Other patient localization techniques available in-
clude ultrasound-based methods, video-based surface
tracking, on-board cone-beam CT or kV x-ray imaging,
CyberKnife and Tomotherapy, etc. For prostate radiation
therapy, on-line ultrasound imaging has gained substan-
tial interest118–120 but in practice has been found suscep-
tible to subtle sources of error and inter-user variability.
On-board CBCT holds promise to become a robust in-
tegrated on-line imaging technology that can yield un-
ambiguous soft-tissue detail at the time of treatment.
Furthermore, CT numbers correlate directly with elec-
tron density, thereby providing the potential for recon-
struction of the actual dose delivered on a daily basis, in
addition to simple anatomic structure alignment. The
details of emerging CBCT will be presented in the next
section. The robotic CyberKnife™TM from Accuray
Inc. (Sunnyvale, CA) represents another promising tech-

nology. The system has a feedback mechanism in which
motion of the CTV, determined through the Accutrak
infrared-x-ray-correlated imaging system, can be fed
back to the robot to track the CTV.121 However, while
this improves the duty cycle, there is a finite time be-
tween measuring tumor position and arranging the com-
pensation for motion. Helical tomotherapy is an alterna-
tive means of delivering IMRT using a device that
combines features of a linear accelerator and a helical CT
scanner.122 The commercial version, the HI-ART IITM,
can generate CT images using the same MV radiation
beam that is used for treatment. Because the unit uses the
actual treatment beam as the x-ray source for image
acquisition, no surrogate telemetry systems are required
to register image space to treatment space. Objective
measures of noise, uniformity, contrast, linearity, and
spatial resolution, and comparison with that of a com-
monly utilized CT simulator, have recently performed by
Meeks et al.123

CBCT for patient localization
CBCT based upon flat-panel technology integrated

with a medical linear accelerator has recently become
available from linac vendors for therapy guidance. The
volumetric images may be used to verify and correct the
planning patient setup in the linac coordinates by com-
paring with the patient position defined in treatment plan.
Both kV and MV beams have been utilized for the
application. The former typically consists of a kV-source
and flat-panel combination mounted on the drum of a
medical accelerator,124 with the kV imaging axis orthog-
onal to that of MV therapy beam. The fan-beam and
cone-beam MV CT in clinical applications have been
reported by Meeks et al.123 and Poulliot et al.125, respec-
tively. It appears that the MV images contain sufficient

Fig. 7. (a) The BSpline grid superimposed on lung contours. (b) On each node, deformation is represented by arrows,
where arrow length is proportional to the deformation.
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resolution of bone and air cavities to register them to
structures in the planning CT with millimeter preci-
sion.124,125

Currently, CBCT is primarily used for guiding the
patient setup.126,127 The procedure is not much different
from the current patient treatment, other than the fact that
the AP/LAT portal images are replaced by volumetric
data. In Fig. 8, we show 3D CBCT images of a prostate
case in one of the fractional treatments fused with the
patient’s planning CT image. It is seen that soft-tissue
structures and boundaries are visible to varying degrees
in the CBCT images. The patient has implanted fiducials,
which show up on both CBCT and planning CT. Our
experience indicates that the cone beam data can clearly
reveal setup error, as well as the anatomical deformations
and other physiological changes. During the patient setup
process, the 3D CBCT images are registered with the
planning CT data through the use of either manual or
automated 3D image registration software that calculates
shifts in x-, y-, and z-directions (depending on the man-
ufacturer, rotations can also be included). The move-
ments determined during the registration represent the
required setup corrections that should be applied to the
patient. Both phantom and patient studies from our group
have shown that the volumetric imaging is superior to the
conventional MV or kV AP/LAT patient setup proce-
dure. We note that, if only translational shifts are per-
missible, the level of improvement is generally within 2
mm as compared with kV AP/LAT setup procedure
(2D/2D match). However, CBCT can readily detect ro-
tational errors that may otherwise be missed by the
2D/2D match. In Fig. 9, we show the localization image
for a head phantom with kV/kV 2D/2D match and
3D/3D match (CBCT/planning CT). The latter approach
was found to be sensitive enough to identify a rotational
error as small as 2°.

In practice, much effort is needed to improve the
robustness and efficiency of the volumetric image regis-

tration process. Furthermore, to fully utilize the volumet-
ric data, a new paradigm with seamlessly integrated
simulation, planning, verification, and delivery proce-
dure is urgently needed. Until this is realized clinically,
the volumetric imaging is nothing but an expensive ex-
tension of the already functional planar verification ap-
proach. The capital cost and other related overheads do
not seem to justify the marginal benefit if the volumetric
data is simply used for determining the patient shift in
the space. However, one should not underestimate the
potential of the volumetric imaging for the future of
radiation therapy, as it opens a new avenue (perhaps the
only avenue), for us to realize the planned dose distri-
bution with high confidence in clinical settings.

A few groups are working on deformable model
based segmentation and patient setup proce-
dures.93,126–128 When deformable registration is used,
there are a few options to achieve the registration de-
pending on whether the primary aim is to match soft-
tissue, or to align 3D bony structures. In Fig. 10, we
show a patient’s CBCT and planning CT registration
results using different registration schemes. The multiple
choices result from the fact that the dimensionality of the
patient data is much greater than that in the patient setup
procedure, and suggest that deformable registration is not
the ultimate solution to volumetric image-guided radia-
tion therapy. Nonetheless, the technique improves the
current method,127 because it partially takes into account
organ deformation by achieving the closest overlay
match possible between the planning and CBCT data sets
according to our clinical objective, and serves as a useful
interim solution before a better integrated approach be-
comes available.

CBCT-based dose verification
Another important application of on-board volumet-

ric imaging is verification of dose delivery. We have
recently evaluated the accuracy of kV CBCT-based dose
calculation and examined if current CBCT is suitable for
the daily dose verification of patient treatment.129,130 A
CT-calibration phantom was first used to calibrate both
conventional CT and CBCT. CT and CBCT images of
the calibration phantom, an anthropomorphic phantom
and 2 patients (a lung and a prostate case) were then
acquired for this study. Our results indicated that the
imperfect quality of CBCT images has minimal impact
(� 3%) on the dosimetric accuracy when the intra-
fractional organ motion is small. When intra-fractional
organ motion is large and motion artifacts is severe (e.g.,
in the case of lung cancer), the dosimetric discrepancy
due to the poor image quality of current CBCT was
found to be clinically significant. Furthermore, in the
latter case, we found that it is possible to use a deform-
able registration algorithm to map the corresponding
electron density information from planning CT to CBCT
and then to proceed with conventional dose calculation.

Fig. 8. The fusion of the 2 types of CT and CBCT images for
a prostate case.

Medical Dosimetry Volume 31, Number 2, 2006102



Respiratory motion artifacts in CBCT
Superior to the common approaches based on 2

orthogonal images, CBCT can provide high-resolution
3D information of the patient in the treatment position,
and thus has great potential for improved target localiza-
tion and irradiation dose verification. In reality, however,
scatter and organ motion are 2 major factors limiting the
quality of current CBCT. When CBCT is used in imag-
ing thorax or upper abdomen of a patient, respiration
induced artifacts such as blurring, doubling, streaking,
and distortion are observed, which heavily degrade the

image quality, and affect the target localization ability, as
well as the accuracy of dose verification. These artifacts
are much more severe than those found in conventional
CT exams, in which each rotation of the scan can be
completed within one second. On the contrary, in CBCT
scan, the gantry rotation speed is much slower, typically
40 seconds to 1 minute for a full 360° scan in acquiring
the projection data, which is more than 10 breathing
cycles for most patients. In Fig. 11, we show the influ-
ence of the same motion on a regular “fast” CT scanner
and CBCT for a motion phantom, where it is clearly seen

Fig. 9. Setup localization image for head phantom with kV/kV 2D/2D match (top) and 3D/3D CBCT match (middle).
The image shown in the bottom panel illustrates that the CBCT is a sensitive technique capable of picking up a 2°

rotational miss-match between the planning CT and CBCT.
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Fig. 10. Image registration of CBCT and planning CT based on bony structure matching, soft tissue matching, and
deformable registration. Different matching techniques emphasize on different aspect of the multidimensional problem.

Fig. 11. (a) Motion phantom for CT and CBCT simulation study. The left circle moves diagonally with an amplitude
of 1.5 cm and a period of 3.52 seconds. (b) Simulated sinograms and their corresponding reconstructed images with
standard FBP algorithm when the circles are stationary. (c) and (d) show the sinograms and their corresponding
reconstructed images for 1 s/rotation acquisition (conventional CT scan speed) and 40 s/rotation acquisition (on-board

CBCT scan speed), respectively.
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that the motion artifacts are much greater than that in a
fast scanner.

In the last decade, considerable effort has been
devoted to finding solutions to remove motion artifacts
and to obtain time-resolved medical images. Wang and
Vannier131 presented a patient-motion estimation and
compensation technique for helical CT systems. Willis
and Bresler132 cast the motion artifact problem as a
time-varying tomography problem and required special-
purpose hardware to optimally sample the spatially and
temporally band-limited CT signal space. A parametric
model for the respiratory motion was used in MRI, and
the motion artifacts were successfully reduced by mod-
ifying the reconstruction algorithm.133 Crawford et al.134

brought the concept into CT imaging, and derived an
exact reconstruction formula for motion compensation
for CT scans. Generally, motion correction algorithms
that assume a motion model work well when the motion

conforms to the model, but have limited success when it
does not. As described above, 4D CT has been developed
in radiation oncology application to explicitly account
for the respiratory motion. The 4D CT can be used to
derive a patient-specific deformation field and then in-
corporated into the CBCT filtered-backprojection (FBP)
image reconstruction process.135 The algorithm was
tested with simulations at different settings correspond-
ing to conventional CT and CBCT scan protocols, with
translational motion and more complex motion, and with
and without Gaussian noise. In Fig. 12, we show the
result for the motion phantom depicted in Fig. 11.135

Because the motion model is directly derived from the
patient images, it should be more accurate than other
artificial modeling, and therefore more efficient motion
correction is expected. In addition to this approach,
Sonke et al.136 developed a CBCT procedure consisting
of retrospective sorting in projection space, similar to

Fig. 12. (a) Phantom and images reconstructed with motion correction for CT and CBCT settings. The 3 images
represent the reconstructed image of stationary phantom (left), the conventional “fast” CT (middle), and the CBCT
(right). (b) Horizontal profiles through the moving circle for the reconstructed CT (left panel) and CBCT (right panel)
images shown in the middle and right of (a). The profiles are in blue. For comparison, the profiles for the stationary
phantom (left panel) and images reconstructed without motion artifacts removal mechanism are also plotted in each case

(black and red curves, respectively).
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that used in 4D CT. The subsets of projection data are
then reconstructed into 4D CBCT dataset. To achieve a
sufficient temporal resolution, however, this will require
slowing down the gantry rotation. The assumption of
periodicity of the respiratory motion is also necessary. Li
et al.137 have recently established a novel 4D CBCT
reconstruction formalism, in which the reconstruction of
a phase will consider not only the projections corre-
sponding to that phase but also those of other phases. By
incorporating information from other phases, the efficacy
and quality of 4D CBCT images are substantially im-
proved. Zeng et al.138 proposed a method to estimate the
parameters of a non-rigid, free-breathing motion model
from a set of projections of thorax that are acquired using
a slow rotating CBCT scanner.

RIGID AND DEFORMABLE IMAGE
REGISTRATION

Development of an effective image registration
technique has been one of the most important research
areas. Depending on the mathematical nature of the
transformation, image registration is divided into rigid
and deformable registrations. In rigid transformations, it
is assumed that the geometry of the object is identical in
the 2 input images and no distortion occurs in the image
acquisition process. A rigid transformation consists of 6
degrees of freedom: 3 displacement parameters and 3
rotational parameters. Deformable registration, on the
other hand, is more complicated and entails the modeling
of voxel dependent distortion. Clinically, the need for a
robust image registration algorithm to compare/fuse im-
ages representing the same structures imaged under dif-
ferent conditions or on different modalities is ever in-
creasing because of the extensive use of multi-modality
imaging and the emergence of new imaging techniques
and methods.

Computer-based rigid image registration has gained
widespread popularity in the last decade and is used in
routine clinical practice. In this approach, the matching
of the 2 input images is formulated into an optimization
problem and the best registration of the 2 images is
obtained by iteratively comparing various possible
matches until no better registration can be found. The
search for the optimal match of the 2 input images is
usually gauged by a ranking function constructed based
on some physical considerations. Depending on the na-
ture of the input images, the formulation of the problem
can be highly complicated. Court and Dong139 used a
rigid transformation for the correction of tissue displace-
ment. A deformable procedure based on the finite ele-
ment model (FEM), in which images are described as
blocks of elastic materials on which forces apply, was
proposed by Bharath et al.140 and Brock et al.141 In this
approach, the parameters that control the behavior of the
elastic material and are responsible for the conversion of
forces into local deformations of the elastic material are

Young’s elastic modulus and Poisson’s ratio. Although
powerful, the model has the drawback that values of the
elasticity and density constant for various tissues are not
readily available and have to be found by a trial and error
procedure. The method also relies on using complicated
software to generate a FEM mesh and masks of the
involved structures. Schreibmann and Xing have pro-
posed a general narrow-band approach for deformable
registration.93 Depending on the problem, modeling of
individual voxel movement can also be made using ei-
ther B-splines,79 thinplate splines142,143,, optical flow
algorithms,144 or fluid flow algorithms.145 Spline inter-
polation is a relatively simple approach and our experi-
ence with the algorithm suggested that the free-form
registration is stable and accurate for dealing with IGRT
image registration problems.146 An improvement to this
method can be achieved by using a spline model with the
smoothness of the deformation field assured by the in-
terpolation between a grid of fixed control points. A
simple method along this line is to deduce the spline
coefficients from a set of user-defined control points, as
was done by Fei et al.147 and Lian et al.143 in warping
and registration of MR volumes. Coselmon et al.148 used
a similar technique to study the accuracy of mutual-
information-based CT registration of the lung at exhale
and inhale respiratory states.

To facilitate the computer decision-making process,
image pre-processing or user interaction may be re-
quired, especially when dealing with a deformable image
registration. The use of homologous anatomic landmark
pairs on the 2 input images or the control points is an
example of this. In reality, the user must have a detailed
understanding of the patient anatomy and the character-
istics of the 2 modalities in order to accurately identify
the control points on both images. The point pairs are
usually obtained interactively with the user repetitively
exploring the input image sets and each time trying to
locate a point in both of them. Due to the 3D nature, the
process is rather tedious and difficult to perform. Schreib-
mann and Xing149 have developed a general method to
facilitate the selection of control points for both rigid and
deformable image registrations. Instead of relying on the
interactive selection of homologous control point pairs
on both model and reference images, in the proposed
approach the user needs only to identify some small
control volumes on the model image in a somewhat
arbitrary fashion. This new way of image registration
eliminates the need for the manual placement of the
homologous control points and allows us to register the
2 images accurately and efficiently. The method was
applied to both rigid and non-rigid image registration
problems and our results indicated that the registration is
reliable and provides a valuable tool for intra- or inter-
modality image registration. In Fig. 13, we show the
registration result of a rectal cancer patient who has
undergone both CT and FLT-PET scans. The increased
robustness and confidence in the registration and the
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increased speed of calculation, especially in the case of
the deformable registration, are important features of the
new technique. Compared to the manual rigid registra-
tion, this method eliminates the nuisance of the control
point pair selection and removes a potential source of
error in registration. Compared to the automated method,
the technique is more intuitive and robust, especially in
the presence of image artifacts.

CLINICAL EXPERIENCE WITH IGRT

Clinically implemented IGRT techniques at Stan-
ford include 4D CT, 4D PET, Varian OBI (both planar
and CBCT), gating, and Accuray CyberKnife. Several
image-guided clinical protocols are under investigation.
4D CT/PET information are used in about 40% of the
thorax and upper abdomen cases for patient specific
tumor margin definition in 3.5D radiation therapy or for
treatment planning of gated radiation therapy. CBCT is
mainly applied for patient setup in the treatment of
head-and-neck, and prostate and other pelvic diseases.
For these sites, the CBCT image quality is reasonable to
visualize soft tissues, but the quality is generally notably
inferior to that of the state-of-the-art multi-slice fan beam
CT scanner. Scan truncation artifacts because the patient
shadow does not fit on the detector and/or organ motion
often cause Hounsfield unit calibration problems. While
this does not seem to influence the image registration, the
use of CBCT for dose calculation should proceed with
caution. Our initial experience indicates that, when com-

pared with traditional CT-based calculation, the dosimet-
ric error is typically less than 3% for prostate or head-
and-neck cases but could be significantly greater in the
thoracic region. Comparison between cone beam data
and portal image derived setup errors show only slight
differences (� 2 mm). However, we should note that the
differences are derived purely based on the use of man-
ufacturer-provided image-fusion software, which often
emphasizes the high-intensity voxels in bony structures.
The next step is to implement soft-tissue based setup
corrections clinically. In reality, volumetric data contain
much more information compared to planar images, and
CBCT promises to be more useful in the future when it
is better integrated with treatment planning and delivery
systems. An ideal integration would be to use volumetric
image-derived information to “tweak” or re-optimize the
treatment plan. This work is still in progress at Stanford.

As another example of IGRT treatment, we describe
our phase I and II pancreatic tumor dose escalation
protocol. The aim is to use CyberKnife to target pancre-
atic tumors more precisely and to limit the toxicities
associated with treatment. In a phase I study, we treated
patients with a single fraction of 15, 20, and 25 Gy to
unresectable pancreatic tumors using the Cyberknife ste-
reotactic radiotherapy (SRT) system (Accuray).150 To
track tumor movement, we implant fiducial seeds percu-
taneously into the pancreatic tumor. Using the Accuray
Synchrony platform, a model in which the position of the
internal fiducials is correlated with the patient’s respira-

Fig. 13. Sagittal, coronal, and axial views of the CT and FLT-PET registration. In addition to the checkerboard display,
a 3D view of the registration is also presented, where an excellent coincidence is observed between the bony structures
revealed in CT (white) and PET images (orange). The right 2 panels of the 2nd row show the convergence behaviors
of our method and the conventional method for 50 independent calculations. Our method leads to reproducible shifts in
x-, y-, and z-directions, and the conventional approach based on the information contained in the whole image entity

leads to large variations in the shifts.
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tory motion is developed. The Cyberknife is able to make
real-time corrections to compensate for tumor movement
during respiration. Prior to treatment, patients underwent
4D planning CT scans. Using this data set, we are able to
visualize how the pancreatic tumor moves/deforms
through respiration and compensate for these dynamic
changes.151 Minimal acute gastrointestinal toxicity was
observed even at the highest dose. All patients who
received 25 Gy had no further local progression of their
tumor until death. In a follow up phase II study, a cohort
of 19 patients were treated with 45-Gy conventionally
fractionated radiation therapy using IMRT to the pan-
creas and regional lymph nodes followed by a 25-Gy
Cyberknife stereotactic radiotherapy boost to the primary
tumor.152 An excellent rate of local control with this
therapy was confirmed. Because of the rapid progression
of systemic disease, we did not observe a significant
improvement in overall survival as compared to historic
controls. However, most patients had a clinical benefit
(decreased pain, increased activity) and decreased serum
tumor marker for pancreatic cancer (CA-19-9) following
therapy. To document that SRS truly resulted in an
anti-tumor effect, we routinely obtain FDG-PET/CT
scans before and after treatment. Figure 14 is an example
of one such study. There was intense metabolic activity
of the pancreatic tumor prior to therapy with a near
complete resolution of FDG uptake in this patient 4

weeks following therapy. The technological challenge
for IGRT to minimize toxicity in this clinical scenario is
the precision delivery of high-dose radiotherapy. This
cannot be accomplished without taking into account the
respiratory associated motion of pancreatic tumors. This
movement takes place in multiple planes and can result
in tumor displacement of up to 1–2 cm. Furthermore,
tumor and organ deformation during respiration must
also be compensated for during therapy.

SUMMARY

With the development of IMRT during the 1990s,
radiation therapy entered a new era. This new process of
treatment planning and delivery shows significant poten-
tial for improving the therapeutic ratio and offers a
valuable tool for dose escalation and/or radiation toxicity
reduction. The improved dose conformity and steep dose
gradients necessitate enhanced precision and accuracy in
patient localization and spawn the development of IGRT,
in which various metabolic and anatomical imaging tech-
niques are integrated into the radiation therapy process.
The overall goal of IGRT is to target tumors more
accurately while better sparing the normal tissues. Much
recent effort is focused on removing the uncertainty in
the definition of the target volume and in the determina-
tion of the position of mobile and often deformable

Fig. 14. FDG-PET images of a pancreatic patient before and after radiation therapy.
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organs. Biological imaging described in this article will
allow us not only to delineate the boundary of the tumor
volume based on the tumors’ biological characteristics
but also to map out the biology distribution of the cancer
cells, affording a significant opportunity for BCRT treat-
ment in the future. Developments of effective 4D CT/
PET techniques will provide effective means for us to
understand the temporal dependence of the involved
structures and design the best possible strategy for tar-
geting the moving tumor. Integration of various imaging
tools for off-line and on-line application is also of para-
mount importance, enabling us to ensure the planned
dose distributions can be realized in the clinical setting.
With the newly available IGRT tools, physicians will be
able to optimize radiotherapy accuracy and precision by
adjusting the radiation beam based on the actual posi-
tions of the target tumor and critical organs during radi-
ation therapy planning and treatment. We should men-
tioned that IGRT is still in its infancy and many technical
issues remain to be resolved, such as the establishment of
a robust deformable registration method, auto-mapping
of the contours outlined on the planning CT to CBCT or
to different phases of 4D CT, and management of the
sheer volume of acquired image sets (both 4D CT/PET
and CBCT). However, it is believed that much of these
technical hurdles will be resolved with time, and that
IGRT will become the standard of practice in the future
through the effort of researchers around the world.
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Abstract 35 

Kilovolt (kV) CBCT based on flat-panel technology integrated with linear accelerator has 

recently become available from linac vendors for therapy guidance. Currently, the system 

is primarily utilized to guide the patient alignment. As an advanced tool of obtaining a 

patient’s 3D representation, CBCT also affords an effective means for us to examine the 

actual dose distribution to be delivered or already delivered to the patient on a daily basis. 40 

Before this can be implemented clinically, the accuracy of kV CBCT-based dose 

calculation must be evaluated and some logistic issues related to the application need to 

be addressed. Indeed, image quality of current CBCT is not as good as conventional 

diagnostic CT due to the scatter and organ motion artifacts, which may lead to dosimetric 

inaccuracy. This work is aimed to investigate the feasibility and accuracy of CBCT-based 45 

dose calculation and to propose a deformable electron density mapping (DEDM) method 

that is potentially useful to facilitate CBCT-based dose calculation. In the proposed 

DEDM technique, the CBCT and planning CT are first registered by using a deformable 

image registration model. The electron density distribution is then mapped from the 

planning CT to the CBCT. The CBCT with the mapped electron density information is 50 

useful for more accurate CBCT-based dose calculation. For disease sites where intra-

fractional organ motion is not an issue, this study indicates that CBCT can be employed 

directly for dose calculation and the results agree with the planned dose distributions to 

within 1~2%. The use of DEDM further reduces the dosimetric inconsistency and 

provides a sanity check of the CBCT-based dose calculation. While the true solution for 55 

using CBCT to calculate dose lies in the improvement of image quality, the DEDM 

approach seems to afford a useful interim technique for better CBCT-based dose 

calculation.   
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I. Introduction  

 

Modern radiation therapy techniques, such as 3D conformal radiotherapy (3DCRT) and 

intensity-modulated radiation therapy (IMRT), provide unprecedented means for 

producing exquisitely shaped radiation doses that closely conform to the tumor 65 

dimensions while sparing sensitive structures. As a result of greatly enhanced dose 

conformality, more accurate beam targeting becomes an urgent issue in radiation therapy. 

In current practice, large uncertainties exist in tumor target localization due to intra- and 

inter-organ motions during the course of radiation treatment. As thus, large safety 

margins around the tumor targets and sensitive structures are introduced to cope with the 70 

otherwise insoluble patient localization problem. The use of non-optimal margins 

compromises the patient care and adversely affects the treatment outcome (1-7). The 

need to improve targeting in high precision radiation therapy has recently spurred a flood 

of research activities in image-guided radiation therapy (IGRT) (7-11). 

CBCT based upon flat-panel technology integrated with a medical linear 75 

accelerator has recently become available from Linac vendors for therapy guidance. The 

volumetric images may be used to verify and correct the planning patient setup in the 

linac coordinates by comparing with the patient position defined in treatment plan. Both 

kV and MV beams(12-14) have been utilized for this application. The former typically 

consists of a kV-source and flat-panel combination mounted on the drum of a medical 80 

accelerator(8-11, 15), with the kV imaging axis orthogonal to that of MV therapy beam.  

In addition to guide the patient setup process, CBCT data acquired prior to the treatment 

can, in principle, be used to recalculate or verify the treatment plan based on the patient 

anatomy of the treatment day. The recalculation starts with the intended fluence maps 

from the patient’s treatment plan, whereas the verification is done by using the fluence 85 

maps measured at the exiting sides of the incident beams. If CBCT-based dose 

calculation is accurate enough (say, with an accuracy within 1~2%), this will provide a 

valuable option for us to predict/assess the patient dose routinely. In reality, because of 

the presence of organ movement/deformation, it is conceivable that the dose distributions 

delivered to the patient are usually different from fraction to fraction. It is paramount to 90 

be able to monitor the actual patient dose for each fraction as well as the accumulated 



 

doses to the target and sensitive structures while the fractional treatment proceeding. This 

will not only give physician more confidence about the treatment but may, in future, 

afford us an effective means to adaptively modify the patient’s treatment plan during the 

course of a radiation therapy based on the dose that has already been delivered. 95 

The accuracy of MV fan-beam and cone-beam CT has recently been assessed by 

Langen et al (16) and Poulliot et al (14). The potential of its counterpart, the kV CBCT, 

for dosimetric calculation has, on the other hand, not been examined systematically. 

Different from conventional fan beam CT, CBCT covers a much larger field of view 

(FOV) in the longitudinal direction, and scatter poses a much severe problem in the 100 

resultant image. In addition, the gantry rotation speed is limited to ~1 min. by IEC 

regulation, which makes the CBCT less prone of motion artifacts. The deteriorated image 

quality raises serious concern about the dosimetric reliability of CBCT-based dose 

calculation. The purpose of this work is two-fold: to evaluate the dosimetric accuracy of 

kV CBCT-based dose calculation and to explore a strategy, coined as the deformable 105 

electron density mapping technique, for improving the CBCT-based dose calculation.  

 

 

II. Method and Materials 

 110 

A. Data acquisition  

The onboard imager (OBI) integrated in a Trilogy™ medical linear accelerator (Varian 

Medical Systems, Palo Alto, CA) is used in this work to acquire CBCT images. The kV 

OBI system is capable of obtaining low-dose, high-resolution radiography, fluoroscopy 

and CBCT. The system is mounted on the treatment machine via robotically controlled 115 

arms, which operate along three axes of motion. A 150 kV X-ray tube with maximum 32 

ms pulse length for continuous irradiation and maximum 320 ms pulse length for single 

pulse is designed for generating high-resolution images from a moving gantry. The spot 

of the tube is located at 90º to the MV source and 100cm from the radiation axis of the 

accelerator. A 39.7cm X 29.8 cm amorphous silicon flat-panel X-ray image detector 120 

(Varian PortalVision™ aS1000) mounted opposite the kV tube is used to acquire digital 

images with a pixel matrix of 2048 X 1536. Using the OBI system, the CBCT data can be 



 

acquired in two modes: full fan mode and half fan mode. In the full fan mode, the beam 

central axis passes through the detector center and a full projection of the scanned patient 

is acquired for each acquirement angle. Total 675 projections are taken during the whole 125 

364º gantry rotation with a maximum field of view (FOV) about 25 cm in diameter and 

17cm in length. The data acquisition time is about 60 second and the reconstruction time 

for 340 slices of 512X512 CBCT images with a voxel size of 0.5mm3 is also about 1 

minute on a PC. The half fan mode is designed to obtain larger FOV. In this mode, the 

detector is shifted laterally to take only half of the projection of the scanned patient for 130 

each acquirement angle. Total about 965 projections are taken during the 364º gantry 

rotation and a FOV of 50 cm in the axial plane and 15cm in the longitudinal direction can 

be achieved. The data acquisition and reconstruction time for 512X512 CBCT images 

with a voxel size of 0.95mm3 using this mode is about double compared with the full fan 

mode. The averaged dose for a head and neck CBCT scan is about 2 cGy, and 3cGy for 135 

an abdominal scan. 

 

B. Calibration of relative electron density  

To use CT or CBCT for radiation dose calculation, it is required to relate the Hounsfield 

Unit (HU) of the scanner with the actual electron density. A CT-phantom, Catphan-600 140 

module CTP404 (Phantom Laboratory, NY), was used for the calibration of planning CT 

(GE Discovery-ST PET/CT scanner, Milwaukee, WI) and CBCT. The gantry rotation 

speed of the 16-slice Discovery-ST scanner is 0.5sec/rotation. The CTP404 has a 

diameter of 150 mm and contains 17 different sizes of inserts with seven different tissue 

substitute materials, air, PMP, LDPE, Polystryrene, Acrylic, Delrin and Teflon, 145 

respectively. Their relative electron densities ranged from 0 to 1.866. A cross section of 

the phantom is shown in figure 2.  The calibration of a CT scanner involves acquiring CT 

images, obtaining average HUs for each inserting materials, and plot the HU as a function 

of the relative electron density. For CBCT calibration, the only difference from the 

conventional CT is that it is necessary to calibrate separately for full and half fan modes 150 

because the beam geometry and characteristics of the two types of scanning modes are 

different. 



 

In order to test the stability of the CBCT calibration curve with time, the phantom 

was repeatedly scanned every week for two months. The obtained HU vs relative electron 

density curves were compared to assess the HU fluctuations with time. 155 

 

C. Phantom study 

CT and CBCT images of the Catphan-600 phantom were acquired using the procedure 

outlined in Sec. II.A. The phantom was placed on a platform that can be set to one-

dimensional cyclic motion with a number of speeds. The axis of the cylindrically shaped 160 

phantom, along which the phantom moves cyclically, was angled from the central axis of 

the CBCT gantry rotation by about 15º in order to study the motion influence on 

CT/CBCT.  The movement of the phantom produces motion artifacts in the images and 

allows us to evaluate the performance of CBCT-based dose calculation in the presence of 

organ motion. The full fan mode was used to scan the phantom. CT and CBCT images of 165 

the phantom were acquired with and without motion. In the former case, the peak-to-peak 

amplitude of the motion was 0.5 cm in the left-right direction and the period was 4s. In 

addition, different sizes of homogeneity cylindrical phantoms, with a diameter of 10.8, 

16, and 26.6 cm, respectively, were scanned to evaluate the scatter influence on image 

quality.  170 

To quantify the difference in the image quality of the CT and CBCT images, we 

first analyzed the HU distribution for all the acquired images. The influence of phantom 

motion and scatter radiation on the HU distribution was investigated. The CT and CBCT 

images were imported to a Varian Eclipse treatment planning system for dosimetric 

comparison study.  For planning and evaluation purpose, a hypothetical spherical target 175 

with a diameter of 5cm was created at the center of the phantom and a single 5 X 5cm2 

6MV photon beam was used to irradiate the target. A simple beam configuration was 

used here because, in this way, the results are more intuitively interpretable. Seven plans, 

corresponding to the different sets of CT images, were generated using the same target 

and beam configuration. The pencil beam convolution dose calculation algorithm 180 

implemented in Varian Eclipse treatment planning system was adopted for dose 

calculation. The resultant isodose curves, dose profiles and DVHs were compared. 

 



 

D. Patient study 

Three prostate cancer patients were selected for the evaluation study of CBCT-based dose 185 

calculation and to demonstrate the feasibility of the proposed deformable electron density 

mapping (DEDM) technique (see next sub-section) for improved dose calculation 

accuracy. For all three cases, the targets included the PTV, consisting of the prostate 

gland with a margin of 6mm, and the seminal vesicles. The critical structures were 

rectum, bladder and femoral heads. IMRT plans using five 15MV photon beams with 190 

gantry angles of 35o, 110o, 180o, 250o, and 325o (in IEC convention) were adopted for the 

three cases. All the plans were normalized to deliver a prescription dose of 78Gy to 99% 

the prostate PTV and no less than 50Gy to the 98% of seminal vesicles in 39 fractions.  

After the patients were setup using the current clinical procedure, CBCT images 

of the patients were acquired using the half fan mode. The CBCT images were 195 

transferred to an Eclipse treatment planning system (Varian Medical Systems, Palo Alto, 

CA). For each case, the IMRT planning parameters generated for the patient’s treatment, 

including beam configuration, MU settings, and MLC files, were employed to recalculate 

the dose based on the CBCT data. The CT and CBCT-based treatment plans were then 

compared. 200 

 

E.  Deformable electron density mapping 

The dosimetric inaccuracy of CBCT-based dose calculation primarily arises from the 

inability of the CBCT technique to provide accurate HU or relative electron density 

distribution. The genuine solution to the problem lies in the improvement of the CBCT 205 

acquisition technology so that high quality images can be acquired. While this endeavor 

is still on-going, here we propose an interim solution for dealing with the problem. Under 

the assumptions that the HU or relative electron density distribution is known from 

planning CT and an acceptable geometric registration between CT and CBCT is 

achievable by a deformable registration, we propose to map the electron density in the 210 

planning CT onto the daily setup CBCT and then carry out the dose calculation. The 

CBCT with mapped electron density, referred to as modified CBCT, possesses the 

anatomical information of CBCT and yet the electron density information of the planning 

CT.  Dose calculation based on the modified CBCT allows us to compute more 



 

accurately the delivered dose with the patient in his/her setup position. The mapping 215 

process is described as follows. 

A free form spline (BSpline) deformable model (17-21) was employed to register 

the planning CT and CBCT and map the deformed electron density from planning CT to 

CBCT. The method was used for several IGRT related projects in our group and others 

and its simplicity and accuracy have been demonstrated (18, 21-24). Briefly, in the 220 

BSpline model, a lattice of user-defined nodes is overlaid on the image. Each node 

contains a deformation vector, whose components are determined by optimizing a metric 

function that characterizes the goodness of the registration. The metric is a function of the 

BSpline nodal parameters. In this work, a voxel-based normal cross correlation (NCC) 

metric was used. A suitable set of node deformations was determined using the gradient-225 

based algorithm L-BFGS(18-20), which is known for its superior performance in large-

scale optimization problems. The optimizer iteratively varies the nodal displacements to 

optimize the metric. The deformation at any point of the image is calculated by spline 

interpolation of closest nodes values. Unlike other spline models, the BSplines are locally 

controlled, such that the displacement of an interpolation point is influenced only by the 230 

closest grid points and changing a lattice node only affects the transformation regionally, 

making it efficient in describing local deformations. After the deformable registration, the 

HU in each voxel in planning CT was mapped to the corresponding point in the reference 

CBCT to produce the modified CBCT images.  

The feasibility of DEDM technique was evaluated by using the three patients 235 

mentioned above. For this purpose, the CT and CBCT images were registered using the 

BSpline model. The targets and sensitive structures contoured on the planning CT were 

copied to the CBCT using the deformable model. For each patient, the treatment plan 

parameters were employed to recompute the dose distribution based on the patient’s 

modified CBCT. The resultant isodose curves and DVHs were evaluated and the level of 240 

improvement in dosimetry due to the use of DEDM was assessed. 

 

 

III. Results 

 245 



 

A. Calibration of CT and CBCT 

The relation between kV HU distribution of CBCT and relative electron dosimetry was 

established by using a Catphan-600 CT phantom following the procedure described in 

Sec. II.B. The calibration curves for planning CT, half fan and full fan CBCT modes are 

shown in figure 1a. Figure 1b compares the calibration curves obtained with an interval 250 

of 1 week during a period of two months for full fan CBCT. No significant variations 

were found in the calibration data, which is similar to what have been observed for MV 

(16). The stability of the kV CBCT and electron density calibration is a good indicator of 

the HU number integrity and the overall performance of the CBCT system. 

 255 

B. Phantom study 

Figures 2a to 2d show the same transverse slices of the CT and CBCT images of the 

Catphan-600 phantom with and without motion. The first two panels are the CT and 

CBCT images of the phantom in the absence of motion, and the second two show the 

same with the phantom motion “switched on”. It is seen that the quality of CBCT images 260 

is worse than that of the conventional planning CT, especially in the presence of motion. 

The HU profiles of the four images along the two orthogonal lines (lines A-A and B-B as 

marked in figure 2) are plotted in figure 3. It is found that the HU profiles of the planning 

CT and CBCT normally agree to within 10% in the static situation. On the other hand, 

when the motion is “switched on”, CBCT shows a much greater level of artifacts (figure 265 

2d) and the HU difference between the conventional CT and CBCT is aggravated, with 

the maximum difference reaching several hundred HUs.  

Because of the cone beam geometry, the influence of scatter radiation in CBCT is 

much severe as compared to that of a fan beam geometry. In general, X-ray scatter 

reduces image contrast, increases image noise and may introduce reconstruction error 270 

into CBCT. Figure 4 plots the HU profiles along a central axis of three different sized 

homogeneous cylindrical water phantoms. As expected, the fluctuation range of HU 

value increases with the phantom size, indicating the increased influence of scatter 

radiation.  

Figures 5, 6 and 7 present the dosimetric results calculated using a single 6 MV 5 275 

X 5cm2 photon beam. Figures 5a to 5d depict the dose distributions in a transverse slice 



 

calculated based on the four sets of images given in figure 2.  Figures 6a and 6b compare 

the dose profiles along the two orthogonal lines (lines A-A and B-B in figure 2), and 

figure 7 compares the DVHs of the target for the four different situations. From these 

results we find that the dose calculated using planning CT agrees with that of CBCT-280 

based calculation to within 1.0%, indicating that it may be acceptable to use kV CBCT 

for dose calculation if no organ motion presents. However, when phantom motion is 

involved, the motion-induced artifacts significantly influence the HU distribution and 

thus the accuracy of CBCT-based dose calculation. For this simple phantom case, we find 

that the discrepancy between the planning CT- and CBCT-based calculations is about 285 

3%, which is clinically significant. The motion artifacts existing in current CBCT limit 

the direct use of CBCT for dose calculation when intra-fractional organ motion is not 

negligible. 
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C. Patient study 

Figures 8a to 8c show the same transverse slices of the planning CT, CBCT, and 

checkerboard image resulting from the deformable registration of the two sets of images 

for one of the prostate cases. The modified CBCT obtained by mapping the HUs from the 

planning CT to CBCT is shown in figure 8d. Our previous studies have indicated that a 295 

registration accuracy better than 2mm is achievable by using the BSpline deformable 

model (18,19). As can be seen from the checkerboard overlay, the registration between 

CT and CBCT is excellent.  Figure 9 shows the isodose distributions for the three 

calculations based on planning CT, CBCT, and modified CBCT for the same case. A 

comparison of DVHs of PTV, prostate, seminal vesicles, bladder and rectum for this case 300 

is presented in figure 10. Figures 11 and 12 present the DVHs for the targets and 

sensitive structures for the other two cases. While there is significant dosimetric 

discrepancy between the planning CT- and modified CBCT-based plans, the results 

obtained using the CBCT or modified CBCT is similar. For all three cases, we found that 

the modified CBCT-reconstructed prostate dose agrees with the planned one to within 305 

3~4%. However, the dosimetric differences in the PTV and seminal vesicles are quite 

significant, which could be as large as ~10% for the PTV and ~50% for the seminal 



 

vesicles. Similar observation was also made by the MD Anderson group in a study using 

daily CT on-rail (9, 25). For the rectum and bladder, the discrepancies between planned 

and reconstructed doses could be greater than 8%. We note that for all the structures 310 

(except the seminal vesicle in the first case), the differences between the CBCT- and 

modified CBCT-based calculations are all less than 2%. For the seminal vesicle in the 

first case, the DVH difference is somewhat large. We attribute this to the relatively small 

volume of the seminal vesicle and a possible structural mismatch between the CT and 

CBCT.  315 

In general, the difference between the planned and CBCT-reconstructed dose 

distributions arises from two factors: (i) patient positioning error and organ 

deformation/displacement; and (ii) relative electron density difference between the CT 

and CBCT images. The small discrepancy between the doses computed using CBCT and 

modified CBCT suggests that, in the prostate cases, the second factor is small and it may 320 

be acceptable to directly use CBCT for dose calculation. The dosimetry is predominantly 

determined by the accuracy of patient setup and the level of interfractional deformation 

/displacement of the involved target and sensitive structures. 

 

 325 

IV. Discussion 

The feasibility and accuracy of using kV CBCT to calculate dose have been investigated 

with phantoms and three clinical prostate cases. In the absence of motion artifacts, it 

seems to be acceptable to directly use CBCT for dose verification calculation. Otherwise, 

extra caution is required to avoid significant dosimetric inaccuracy. To cope with the 330 

problem of deteriorated imaging quality of CBCT, a DEDM method has been proposed to 

map the electron density information from the patient’s planning CT to the setup CBCT 

with a deformable image registration. In IGRT, since the registration has to be done for 

the purpose of patient setup, the computational overhead of introducing DEDM is 

minimal. Before an effective CBCT image quality improving technique is in place, 335 

DEDM provides a useful interim solution to the problem. In the presence of organ 

motion, our phantom study indicated that significant dosimetric errors could be resulted. 

Recent developments of 4D CT and 4D CBCT (21, 26, 27), in conjunction with the 



 

proposed DEDM method, may provide a valuable solution to the problem of CBCT-

based dose calculation in the regions of thorax and upper abdomen.  340 

Dose distributions computed based on CBCT or modified CBCT represent the 

dose to be delivered to the patient because the CBCT was acquired prior to the patients’ 

treatments after the patients were repositioned/shifted using the patient setup procedure in 

current practice. In the prostate IMRT plans, the inherent dosimetric error resulted from 

the use of CBCT images is found to be small. However, the dosimetric error caused by 345 

the inter-fractional organ motion/deformation is not insignificant, as revealed by the dose 

recalculation results given in the last section. A few groups are working on deformable 

model based segmentation and patient setup procedures (9, 25, 28, 29). When deformable 

model is used, one can go beyond simply aligning the 3D bony structures to achieve a 

registration based on matching soft-tissue organ(s).  The problem here becomes multi-350 

dimensional depending on which structure to align during the patient setup process. The 

multiple choices resulting from the fact that the dimensionality of the patient data is much 

greater than that available in the patient setup procedure and suggest that deformable 

registration is not the ultimate solution to volumetric image-guided radiation therapy. 

However, patient positioning based on deformable model improves the current body-355 

structure-based patient alignment method since it partially takes into account organ 

deformation by achieving the closest overlay match possible between the planning and 

CBCT data sets according to our clinical objective, and provides an improved positioning 

technique. We should emphasize that, even when 3D volumetric based deformable 

registration is available in the future, the problem of patient positioning will not disappear 360 

as relative organ deformations may well persist.  A possible solution to accommodate 

various factors mentioned above is for us to re-optimize or tweak the IMRT plan based 

on the patient’s setup CBCT. Indeed, in order to fully utilize the CBCT volumetric data, a 

new paradigm with seamlessly integrated simulation, planning, verification, and delivery 

procedure is urgently needed. Until this is realized clinically, the volumetric imaging is 365 

nothing but an expensive extension of the existing planar verification approach. 

 Finally, we emphasize that a pre-assumption of the proposed DEDM 

approach is that the image registration between CT and CBCT is sufficiently accurate to 

avoid wrong assignment of electron density information. Generally, the accuracy of 



 

deformable registration may depend on the quality of CBCT.  One could naturally expect 370 

that, at a certain level of intensity mismatch between the CT and CBCT, the deformable 

model may break down. In a parallel study, we have recently studied the influence of 

noises on the accuracy of rigid and deformable image registration and developed a 

multiscale image registration technique for the registration of medical images that contain 

significant levels of noise(30).  As usually, after image registration, it is helpful to have an 375 
experienced physician or physicist to double check the registration results.  

 

 

V. Conclusion 

Onboard CBCT provides useful volumetric anatomy information for patient positioning 380 

verification. When used for dose verification calculation, it is required to have a reliable 

HU to electron density curve. Our phantom and patient studies have indicated that, in the 

absence of motion artifacts, the dosimetric accuracy seems to be acceptable for the 

purpose of dosimetric sanity check. Our motion phantom study indicated that the 

dosimetric errors may be more pronounced when intra-fractional organ motion is present. 385 

In this situation, a direct use of CBCT for dose calculation is not recommended. The use 

of a reliable deformable registration would allow us to incorporate the electron density 

distribution from the planning CT and to calculate the dose more accurately. The 

proposed DEDM approach affords a practical means to estimate the dose to be delivered 

or already delivered to the patient based on the setup CBCT.  390 
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Figure Captions 

 

Fig. 1. (a)The calibration curves (Hounsfield number vs relative electron density) for 490 

planning CT, half fan and full fan mode CBCT; (b) the variation of calibration curves 

with time for the full fan CBCT. 

 

Fig. 2. The CT and CBCT images with and without motion for the Catphan-600: (a) 

planning CT in the absence of phantom motion; (b) CBCT in the absence of phantom 495 

motion; (c) planning CT with moving phantom; and (d) CBCT with moving phantom. 

 

Fig. 3. HU profiles of planning CT and CBCT images (see figure 2) along the A-A line 

(panel a) and B-B line (panel b).  

 500 

Fig. 4. HU profiles for three different sized homogeneous cylindrical water phantoms. 

The diameters for large, medium and small phantoms are 10.8, 16.0 and 26.6 cm, 

respectively. 

 

Fig. 5. Dose distributions in a transverse slice calculated based on the four sets of CT data 505 

shown in figure 2: (a) planning CT; (b) CBCT; (c) planning CT with a motion; and (d) 

CBCT with a motion. In all four situations, a 5 X 5cm2 single field plan was used to 

irradiate a spherical hypothetical target with a diameter of 5cm located at the phantom 

center. 

 510 

Fig. 6. Comparison of the dose profiles along the two orthogonal lines shown in figure 2 

for the Catphan-600 phantom: (a) profile along the A-A line; (a) profile along the B-B 

line.  

 

Fig. 7. Comparison of the target DVHs calculated based on the four sets of CT data 515 

shown in figure 2 for the phantom case. 

 

 



 

 

Fig. 8. CT, CBCT and modified CBCT images for the first prostate case: (a) planning 520 

CT; (b) daily CBCT; (c) checkerboard overlay of CT and CBCT after the deformation 

registration; and (d) modified CBCT. 

 

Fig. 9. Dose distributions in a transverse slice calculated based on the: (a) planning CT; 

(b) CBCT; and (c) modified CBCT for the prostate case. 525 

 

Fig. 10. Comparison of DVHs of the prostate, PTV, rectum and bladder obtained based 

on the planning CT, CBCT and modified CBCT images for the first prostate case. 

 

Fig. 11. Comparison of DVHs of the prostate, PTV, rectum and bladder obtained based 530 

on the planning CT, CBCT and modified CBCT images for the second prostate case. 

 

Fig. 12. Comparison of DVHs of the prostate, PTV, rectum and bladder obtained based 

on the planning CT, CBCT and modified CBCT images for the third prostate case. 

  535 
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Multiscale Deformable Registration
Dana Paquin*, Doron Levy, and Lei Xing

Abstract— Multiscale image registration techniques
are presented for the deformable registration of med-
ical images. These techniques are shown to be par-
ticularly effective for registration problems in which
one or both of the images to be registered contains
significant levels of noise. Experiments using B-splines
deformable registration models demonstrate that or-
dinary deformable registration techniques fail to pro-
duce accurate results in the presence of significant
levels of noise. Further experiments in which classical
denoising algorithms are applied prior to registration
show that registration fails in this case for high levels
of noise, as well. The hierarchical multiscale image
decomposition of E. Tadmor, S. Nezzar, and L. Vese,
A multiscale image representation using hierarchical
(BV, L2) decompositions, Multiscale Modeling and
Simulations, vol. 2, no. 4, pp. 554–579, 2004, is pre-
sented, and multiscale image registration algorithms
are developed based on the multiscale decomposition.
An accurate registration of noisy images is achieved by
obtaining a hierarchical multiscale decomposition of
the images and registering the resulting components.
This approach enables a successful registration of im-
ages that contain noise well beyond the level at which
ordinary deformable registration fails. Further, an
iterated multiscale registration algorithm is presented
which improves the accuracy and computational ef-
ficiency of other registration methods. The accuracy
and efficiency of the multiscale registration techniques
are demonstrated using both digital phantom and
clinical case studies in two and three dimensions.

Index Terms— Image registration, deformable reg-
istration, noise, multiscale decomposition.

I. I NTRODUCTION
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I MAGE registration is the process of determining
the optimal spatial transformation that maps one

image to another. Image registration is necessary,
for example, when images of the same object are
taken at different times, from different imaging
devices, or from different perspectives. The two
images to be registered, called the fixed and moving
images, are the input to the registration algorithm,
and the output is the optimal transformation that
maps the moving image to the fixed image. Ideally,
the transformed moving image should be identical
to the fixed image after registration. Applications of
image registration include image-guided radiation
therapy (IGRT), image-guided surgery, functional
MRI analysis, and tumor detection, as well as many
non-medical applications, such as computer vision,
pattern recognition, and remotely sensed data pro-
cessing (see [4] and the references therein).

Image registration models are classified into two
main categories according to the transformation
type: rigid and deformable. Rigid image registration
models assume that the transformation that maps the
moving image to the fixed image consists only of
translations and rotations, while deformable models
allow localized stretching of images. While rigid
models are sufficient in certain circumstances, many
registration problems, particularly in medical ap-
plications, are non-rigid. For example, respiratory
motion causes non-rigid, or deformable, distortion
of the lungs and other organs. As another exam-
ple, image-guided neurosurgery procedures require
deformable registration of pre- and intra-operative
images of the brain [14], [19]. For additional appli-
cations of deformable registration, see [11], [16],
[17] and the references therein.

This paper extends our previous work [13], a
multiscale approach to rigid registration in the pres-
ence of noise, to deformable registration problems.
Our approach is to decompose the images that
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are to be registered into a hierarchical multiscale
decomposition. Registration is then obtained with
a hierarchical approach in which the various scales
are registered consecutively, with each additional
scale registration providing a fine tuning to the
previous registration.

The structure of this paper is as follows. In
Section II, we provide a brief overview of the
image registration problem and discuss deformable
registration techniques. In Section III, we describe
the problem of deformable image registration in
the presence of noise, and briefly discuss standard
denoising techniques. In Section IV, we review
the hierarchical multiscale image decomposition of
[18], and we present three multiscale image regis-
tration algorithms based on the decomposition. In
Section V, we demonstrate the failure of ordinary
deformable registration techniques when one or
more of the images to be registered contains noise,
as well as the failure of ordinary techniques even
when the noisy images are denoised using classical
filtering methods prior to registration. The accu-
racy and efficiency of our multiscale registration
techniques are studied in Section V with several
image registration experiments in both two and
three dimensions. Concluding remarks are given in
Section VI.

II. M ATHEMATICAL FORMULATION OF THE

REGISTRATION PROBLEM

Given afixedand amovingimage, the registration
problem is the process of finding anoptimal trans-
formationthat brings the moving image into spatial
alignment with the fixed image. While this problem
is easy to state, it is difficult to solve. The main
source of difficulty is that the problem is ill-posed,
which means, for example, that the problem may
not have a unique solution. For a detailed overview
of the image registration problem and various image
registration techniques, see [12].

To formulate the registration problem mathemat-
ically, a two-dimensional gray-scale imagef is a
mapping which assigns to every pointx ∈ Ω ⊂ R

2

a gray valuef(x) (called the intensity value of the
image at the pointx). We will consider images as
elements of the spaceL2(R2). Color images can

be defined, for example, in terms of vector-valued
functions f = (f1, f2, f3) representing the RGB-
color scales. For the medical imaging applications
that we are interested in, images are in fact given in
terms of discrete data, and the functionf must be
obtained via interpolation. We will not discuss this
construction here, but assume that an interpolation
method has been chosen.

Any registration algorithm has three main com-
ponents:

1) Thetransformation modelwhich specifies the
way in which the moving image can be trans-
formed to correspond to the fixed image.

2) The distance measure, or metric, used to
compare the fixed and moving images.

3) The optimization processthat varies the pa-
rameters of the transformation model in such
a way that the transformation produced by the
registration process is optimal.

Given a distance measureD : (L2(R2))2 → R and
two imagesf(x),m(x) ∈ L2(R2), the solutionφ of
the registration problem is given by the following
minimization problem:

φ = argmin
ψ:R2→R2

D(f(x),m(ψ(x))), (1)

where ψ is in the specified space of transforma-
tion models. Examples of commonly used distance
measures are mean squares, normalized correla-
tion, and mutual information. Examples of typical
transformation models are rigid, affine, polyno-
mial, and spline transformations [12]. To minimize
D(f,m(ψ)), we must choose an optimizer which
controls the minimization. The most commonly
used optimization techniques in image registration
are gradient descent and regular step gradient de-
scent methods. The implementation of the regis-
tration algorithm works in the following way: at
each iteration, the distanceD between the two
images is computed. The specified transformation is
then applied to the moving image, and the distance
between the images is recomputed. In theory, this
process continues until the distance is minimized
(or maximized in certain cases), though in practice
a stopping criterion is often applied.
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Historically, image registration problems have
been classified as eitherrigid or non-rigid. As
most of the organs in the human body are not
confined to rigid motion only, much of the current
work in medical image registration is focused on
the deformable case. Although deformable image
registration clearly allows for more flexibility in
the types of images and applications in which it
can be used, deformable registration techniques
require significantly more computation time than
rigid registration techniques, and involve the de-
termination of a very large number of parameters.
In this paper, we shall focus on the problem of
deformable registrationin the presence of noise.

A. Deformable registration techniques

Spline-based transformation models are among
the most common and important transformation
models used in non-rigid registration problems
[6]. Spline-based registration algorithms usecontrol
points in the fixed and moving images and a spline
function to define transformations away from these
points. The two main spline models used in registra-
tion arethin-plate splinesandB-splines. Thin-plate
splines have the property that each control point
has a global influence on the transformation. That
is, if the position of one control point is perturbed,
then all other points in the image are perturbed as
well. This can be a disadvantage because it limits
the ability of the transformation model to model
localized deformations. In addition, the computation
time required for a thin-plate spline-based registra-
tion algorithm increases significantly as the number
of control points increases. See [3] for an overview
of thin-plate splines.

In contrast, B-splines are only defined in the
neighborhood of each control point. Thus perturb-
ing the position of one control point affects the
transformation only in a neighborhood of that point.
As a result, B-spline-based registration techniques
are more computationally efficient than thin-plate
splines, especially for a large number of control
points. See [9] and [10] for a detailed descrip-
tion of B-splines transformation models. In this
paper, we shall use deformable registration algo-
rithms based on B-spline deformation models. To

define the spline-based deformation model, letΩ =
{(x, y) | 0 ≤ x ≤ X, 0 ≤ y ≤ Y } denote the
domain of the image volume. Letα denote anx×ny
mesh of control pointsαi,j with uniform spacingδ.
Then the B-spline deformation model can be written
as the 2-D tensor product of 1-D cubic B-splines:

φ(x, y) =

2
∑

l=0

2
∑

m=0

Bl(x)Bm(y)αi+l,j+m, (2)

where i = ⌊x/nx⌋ − 1 , j = ⌊y/ny⌋ − 1, andBl
represents thel-th basis of the B-spline:

B0(u) =
1

6
(1− u)3 ,

B1(u) =
1

6
(3u3 − 6u2 + 4) ,

B2(u) =
1

6
(−3u3 + 3u2 + 3u+ 1) .

Changing the control pointαi,j affects the trans-
formation only in a local neighborhood ofαi,j .
The control pointsα act as parameters of the B-
spline deformation model, and the degree of non-
rigid deformation which can be modeled depends on
the resolution of the mesh of control pointsα. A
large spacing of control points allows modeling of
global non-rigid deformation, while a small spacing
of control points allows modeling of local non-
rigid deformations. Additionally, the number of
control points determines the number of degrees of
freedom of the transformation model, and hence,
the computational complexity. For example, a B-
spline deformation model defined by a10 × 10
grid of control points yields a transformation with
2× 10× 10 = 200 degrees of freedom. Thus there
is a tradeoff between the model flexibility and its
computational complexity.

In Section V, we demonstrate the accuracy of B-
splines deformable registration techniques for the
registration of non-noisy images. Finally, we note
in passing that there are additional deformable
registration techniques such as elastic models [2],
viscous fluid models [5], and finite element models
[7].
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III. R EGISTRATION IN THE PRESENCE OF NOISE

A. Speckle noise model

In imaging, the term noise refers to random fluc-
tuations in intensity values that occur during image
capture, transmission, or processing, and that may
distort the information given by the image. Image
noise is not part of the ideal signal and may be
caused by a wide range of sources, such as detector
sensitivity, environmental radiation, transmission er-
rors, discretization effects, etc. In this paper, we
will study the problem of image registration in the
presence of high levels ofspecklenoise (though we
have conducted experiments demonstrating that we
obtain similar results for other types of noise). See,
for example, our results on rigid registration [13].

Speckle noise, or multiplicative noise, is a type of
noise that occurs commonly in medical imaging. In
particular, speckle noise is often found in ultrasound
images [1]. It is defined by the following model.
We let s(x) denote the actual image, andf(x) the
observed image. Then

f(x) = s(x) + η(0, δ) · s(x), (3)

whereη(0, δ) is uniformly distributed random noise
of mean 0 and varianceδ. We add speckle noise of
increasing variance to the imageS, as illustrated in
Figure 4. For a given noise varianceδ, we denote
the noisy imageSδ. In Section V, we present the
registration results obtained upon registering the
noisy imagesSδ with the original imageI for
increasing values ofδ.

B. Classical denoising techniques

Since we are considering the problem of image
registration in the presence of noise, it is natural to
consider whether or not the application of standard
denoising algorithms prior to registration enables a
successful deformable registration of noisy images.
Image denoising is a fundamental problem in image
processing, and there has been much research and
progress on the subject. As our primary interest is
the problem of image registration of noisy images,
and not denoising, we do not focus on the general
problem of image denoising, but instead consider

a few of the most common and computationally
simple denoising techniques.

Spatial filtering is the traditional approach to
removing noise from images. Spatial filters use
the assumption that noise occupies the higher re-
gions of the frequency spectrum, and thus attenuate
high spatial frequencies. Local spatial filtering is
a process in which the value of a given pixel in
the filtered image is computed by applying some
algorithm to the pixel values in a neighborhood of
the given pixel. Typical implementations of spatial
filters include mean filtering, median filtering, and
Gaussian smoothing. See [20] for an overview of
classical spatial filtering techniques.

Mean filtering computes the value of each output
pixel by computing the statistical mean of the neigh-
borhood of the corresponding input pixel. That is,
the intensity value of each pixel is replaced with the
mean, or average, value of its neighbors (including
itself). The neighborhood size is typically taken to
be a 3× 3 or a 5× 5 square grid (or kernel); larger
neighborhoods result in more severe smoothing. In
this paper, we use a 3× 3 square kernel to perform
mean filtering. Applying a mean filter to a noisy
image reduces the amount of variation in gray-
level intensity between pixels. Although this filter
is computationally easy to implement, it is sensitive
to the presence of outliers.

Median filtering computes the value of each
output pixel by computing the statistical median
of the neighborhood of the corresponding input
pixel. The median filter has two main advantages
over the mean filter. First, the median is a more
robust average than the mean, and thus is less
sensitive to a single very unrepresentative pixel in
a neighborhood. Second, since the median value
must actually be the value of one of the pixels in
the neighborhood, the median filter does not create
unrealistic pixel values when the filter straddles an
edge. For this reason, the median filter is much more
effective at preserving sharp edges than the mean
filter. As with the mean filter, we use a 3× 3 square
kernel to perform median filtering.

Convolution with a Gaussian kernel is another
commonly used spatial filtering technique. The 2-
dimensional Gaussian kernel has the form
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G(x, y) =
1

2σ2
e−

x2+y2

2σ2 , (4)

whereσ is the standard deviation of the distribution,
which we assume has mean zero. The Gaussian
filter computes a weighted average of each pixel’s
neighborhood, with the average weighted towards
the value of the central pixels, in contrast to the
mean filter’s uniformly weighted average. In Sec-
tion V, we present the registration results obtained
upon applying classical denoising techniques to
noisy images prior to registration.

IV. M ULTISCALE REGISTRATION ALGORITHMS

A. The multiscale decomposition

The multiscale registration techniques to be dis-
cussed in this paper are based on the multiscale im-
age representation using the hierarchical(BV,L2)
decompositions of [18]. This multiscale decom-
position will provide a hierarchical expansion of
an image that separates the essential features of
the image (such as large shapes and edges) from
the fine scales of the image (such as details and
noise). The decomposition is hierarchical in the
sense that it will produce a series of expansions
of the image that resolve increasingly finer scales,
and hence include increasing levels of detail. We
will eventually apply the multiscale decomposition
algorithm to the problem of image registration in
the presence of noise, and will demonstrate the
accuracy of the multiscale registration technique for
noisy images.

We will use the following mathematical spaces
in the decomposition algorithm. The space of func-
tions of bounded variation,BV , is defined by:

BV =
{

f
∣

∣ ||f ||BV :=

sup
h6=0

|h|−1||f(·+ h)− f(·)||L1 <∞
}

.

We will also use the Sobolev spaceW−1,∞

with norm given by:

||f ||W−1,∞ := sup
g

[
∫

f(x)g(x) dx

||g||W 1,1

]

,

where||g||W 1,1 := ||∇g||L1 .
Define theJ-functionalJ(f, λ) as follows:

J(f, λ) := inf
u+v=f

λ||v||2L2 + ||u||BV , (5)

whereλ > 0 is a scaling parameter that separates
theL2 andBV terms. This functionalJ(f, λ) was
introduced in the context of image processing by
Rudin, Osher, and Fatemi [15]. Let[uλ, vλ] denote
the minimizer ofJ(f, λ). TheBV component,uλ,
captures the coarse features of the imagef , while
theL2 component,vλ, captures the finer features of
f such as noise. This model is effective in denoising
images while preserving edges, though it requires
prior knowledge on the noise scalingλ.

Tadmor, et al. proposed in [18] an alternative
point of view in which the minimization ofJ(f, λ)
is interpreted as a decompositionf = uλ + vλ,
whereuλ extracts the edges off and vλ extracts
the textures off . This interpretation depends on the
scaleλ, since texture at scaleλ consists of edges
when viewed under a refined scale. We refer to
vλ = f − uλ as the residual of the decomposition.
Upon decomposingf = uλ + vλ, we proceed to
decomposevλ as follows:

vλ = u2λ + v2λ,

where

[u2λ, v2λ] = arginf
u+v=vλ

J(vλ, 2λ).

Thus we obtain a two-scale representation off
given byf ∼= uλ+u2λ, where nowv2λ = f−(uλ+
u2λ) is the residual. Repeating this process results
in the following hierarchical multiscale decomposi-
tion of f . Starting with an initial scaleλ = λ0, we
obtain an initial decomposition of the imagef :

f = u0 + v0,

[u0, v0] = arginf
u+v=f

J(f, λ0).

We then refine this decomposition to obtain

vj = uj+1 + vj+1,
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[uj+1, vj+1] = arginf
u+v=vj

J(vj , λ02
j+1), j = 0, 1, . . .

After k steps of this process, we have:

f = u0 + v0 (6)

= u0 + u1 + v1

= u0 + u1 + u2 + v2

= . . .

= u0 + u1 + . . .+ uk + vk,

which is a multiscale image decompositionf ∼
u0+u1+. . .+uk, with a residualvk. As k increases,
the uk components resolve edges with increasing
scalesλk = λ02

k.
Implementation of the multi-scale decomposition:

As described in [18], the initial scaleλ0 should
capture the smallest oscillatory scale inf , given by

1

2λ0

≤ ||f ||W−1,∞ ≤
1

λ0

. (7)

However, in practice, we may not be able to deter-
mine the size of||f ||W−1,∞ , so we determine the
initial choice ofλ0 experimentally. Following [18],
for the applications presented in this paper, we will
useλ0 = 0.01 andλj = λ02

j .
We follow the numerical algorithm of [18] for

the construction of our hierarchical decomposition.
In each step, we use finite-difference discretization
of the Euler-Lagrange equations associated with
the J(vj , λj+1) to obtain the next term,uj+1, in
the decomposition of the imagef . Due to the
singularity when|∇uλ| = 0, we replaceJ(f, λ)
by the regularized functionalJǫ(f, λ) :=

inf
u+v=f

{λ||v||2L2 +

∫

Ω

√

ǫ2 + |∇u|2 dx dy}, (8)

and at each step, we find the minimizeruλ of Jǫ.
The Euler-Lagrange equation forJǫ(f, λ) is

uλ −
1

2λ
div

(

∇uλ
√

ǫ2 + |∇uλ|2

)

= f in Ω ,

with the Neumann boundary conditions:

∂uλ
∂n

∣

∣

∣

∣

∂Ω

= 0, (9)

where ∂Ω is the boundary of the domainΩ and
n is the unit outward normal. We thus obtain an

expansionf ∼
k
∑

j=0

uj , where theuj are constructed

as approximate solutions of the recursive relation
given by the following elliptic PDE:

uj+1 −
1

2λj+1

div

(

∇uj+1
√

ǫ2 + |∇uj+1|2

)

(10)

= −
1

2λj
div

(

∇uj
√

ǫ2 + |∇uj |2

)

.

To numerically implement the method, we cover
the domainΩ with a grid (xi := ih, yj := jh), and
discretize the elliptic PDE of Eq. (10) as follows:.

ui,j = fi,j (11)

+
1

2h2

[

ui+1,j − ui,j
√

ǫ2 + (D+xui,j)2 + (D0yui,j)2

]

−
1

2h2

[

ui,j − ui−1,j
√

ǫ2 + (D−xui,j)2 + (D0yui−1,j)2

]

+
1

2h2

[

ui,j+1 − ui,j
√

ǫ2 + (D0xui,j)2 + (D+yui,j)2

]

−
1

2h2

[

ui,j − ui,j−1
√

ǫ2 + (D0xui,j−1)2 + (D−yui,j)2

]

,

whereD+, D−, andD0 denote the forward, back-
ward, and centered divided differences, respectively.
To solve the discrete regularized Euler-Lagrange
equations (11), we use the Gauss-Siedel iterative
method to obtain:
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un+1
i,j = fi,j (12)

+
1

2h2





uni+1,j − u
n+1
i,j

√

ǫ2 + (D+xuni,j)
2 + (D0yuni,j)

2





−
1

2h2





un+1
i,j − u

n
i−1,j

√

ǫ2 + (D−xuni,j)
2 + (D0yuni−1,j)

2





+
1

2h2





uni,j+1 − u
n+1
i,j

√

ǫ2 + (D0xuni,j)
2 + (D+yuni,j)

2





−
1

2h2





un+1
i,j − u

n
i,j−1

√

ǫ2 + (D0xuni,j−1)
2 + (D−yuni,j)

2



 .

To satisfy the Neumann boundary conditions (9),
we first reflectf outsideΩ by adding grid lines
on all sides ofΩ. As the initial condition, we set
u0
i,j = fi,j . We iterate this numerical scheme for
n = 0, 1, . . . N until ||un∞ − un∞−1|| is less than
some preassigned value so thatun∞

i,j is an accurate
approximation of the fixed point steady solutionuλ.

Finally, we denote the final solutionuλ :=
{un∞

i,j }i,j . To obtain the hierarchical multiscale de-
composition, we reiterate this process, each time
updatingf andλ in the following way:

fnew ← fcurrent − uλ,
λnew ← 2λcurrent.

(13)

That is, at each step, we apply theJ(fcurrent −
uλ, 2λ) minimization to the residualfcurrent − uλ
of the previous step. Takingλj = λ02

j , we obtain
after k steps a hierarchical multiscale decomposi-
tion f = uλ0

+ uλ1
+ . . . + uλk

+ vλk
, where we

write uλj
= uj . We call theuj , j = 1, 2, . . . , k the

components off , and thevk the residuals. For ease
of notation, given an imagef , we letCk(f) denote
the kth scale of the imagef , k = 1, . . . ,m:

Ck(f) =

k−1
∑

i=0

uk(f). (14)

ThusCk(A) will denote thekth scale of the image
A, andCk(B) will denote thekth scale of image
B.

B. Multiscale registration

In this section, we present multiscale image reg-
istration techniques that are based on the hierar-
chical multiscale decomposition of [18] reviewed
in Section IV-A. For the general setup, consider
two imagesA (the fixed image) andB (the moving
image), and suppose that we want to register image
B with imageA. Suppose that one or both of the
images contains a significant amount of noise. If
only one of the images is noisy, we assume that it is
imageB. For each of the three algorithms presented
below, we first apply the multiscale hierarchical
decomposition to both images. Letm denote the
number of hierarchical steps used for the multiscale
decompositions. We presented Algorithms I and II
in the context of rigid registration in [13].

1) Algorithm I: Single-node registration:In our
single-node multiscale registration algorithm, Algo-
rithm I, we register thekth scaleCk(B) of image
B with the imageA, for k = 1, . . . ,m. We refer to
this algorithm as aone-node multiscale registration
algorithm because in each of them registrations
prescribed by the algorithm, the moving image is
always the imageA. That is, in the single-node
algorithm, we use only the multiscale components
of the fixed imageB. Since this algorithm considers
scales only of the noisy (moving) image, we expect
that it will be particularly successful when only one
of the images to be registered is noisy.

Recall thatC1(B) contains only the coarsest
scales of the imageB, and ask increases,Ck(B)
contains increasing levels of detail (and hence,
noise) of the imageB. Thus, we expect that the
registration ofCk(B) with A should be more ac-
curate than ordinary registration for the first few
values ofk. As k increases, however, we expect
that eventually the scaleCk(B) will become too
noisy to register successfully.

Upon registeringCk(B) with A for k =
1, 2, . . . ,m, we can estimate the actual transforma-
tion that maps the images to one another either
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by computing a weighted average of the trans-
formations produced by thesem registrations, or
simply by taking as the estimate of the actual
transformation the transformation corresponding to
one of the coarse scale registrations. In [13], we
showed that in the case of rigid registration, using
one of the coarse scale registration transformations
to estimate the actual transformation is sufficient for
a high degree of accuracy.

2) Algorithm II: Multi-node registration:In our
multi-node multiscale registration algorithm, Algo-
rithm II, we register thekth scale of imageB with
the kth scale of imageA, for k = 1, 2, . . .m. We
refer to this algorithm as amulti-node multiscale
registration algorithmbecause in each of them reg-
istrations prescribed by the algorithm, we consider
both the scales of the fixed imageA and the scales
of the moving imageB. As before, we expect that
registration ofCk(B) with Ck(A) should be more
accurate than ordinary registration for the first few
values ofk. As k increases, however, we expect
that eventually the scalesCk(A) and Ck(B) will
become too noisy to register successfully. Since
this algorithm considers scales of both images, we
expect that it will be particularly successful when
both images are noisy.

Upon registeringCk(B) with Ck(A) for k =
1, 2, . . . ,m, we estimate the actual transformation
that maps the images to one another either by com-
puting a weighted average of the transformations
produced by thesem registrations, or simply by
using one of the coarse scale registrationsCk(B)
with Ck(A) (for some smallk), as in Algorithm I.

3) Algorithm III: Iterated multiscale registration:
The accuracy and speed of convergence of Algo-
rithms I and II can be improved by implementing
an iterated multiscale registration algorithm, as fol-
lows. To iterate Algorithm I, we first register the
first coarse scaleC1(B) of the moving image with
the fixed imageA. The output of this registration
process is a set of deformation parameters that
represent the deformation transformation produced
by the registration algorithm. We then register the
second scaleC2(B) of the moving image with the
fixed imageA, using the output deformation param-
eters from the first registration as the starting pa-

rameters for the second registration. We repeat this
procedure until the last scale (or desired stopping
scale) is reached. That is, at each stage, we use the
output deformation parameters from the previous
registration as the initial parameters for the current
registration. The iterated form of Algorithm II is
analogous, but at each stage we register thekth scale
Ck(B) of the moving image with thekth component
Ck(A) of the fixed image. We expect the single-
node iterated multiscale registration algorithm to be
particularly effective when only one of the images
to be registered contains significant levels of noise,
and we expect the multi-node iterated multiscale
registration algorithm to be particularly effective
when both of the images contain noise.

V. RESULTS AND DISCUSSION

A. Ordinary registration of a deformed image

Consider the mid-sagittal brain sliceI and the
deformed imageS, shown in Figure 1. The mid-
sagittal brain sliceI is taken from the Insight
Segmentation and Registration Toolkit (ITK) data
repository [8]. The deformed imageS is obtained
by applying a known B-spline deformation to the
original imageI. Since the deformation transfor-
mation that maps the deformed imageS to the
original image I and corresponding deformation
field are known, we can effectively evaluate the
accuracy of various deformable registration meth-
ods by comparing the output deformation fields
with the known deformation field. For all reg-
istration simulations presented in this paper, we
use a B-spline deformable registration technique
with a mean squares image metric and a conjugate
gradient descent algorithm. However, the multiscale
registration algorithms developed in this paper are
independent of the registration technique used to
register the images.

Using a B-spline deformable registration model,
the imageS is successfully registered with the
image I. In Figure 2, we compare the result of
the registration process, namely the image obtained
upon applying the optimal deformable transforma-
tion determined by the algorithm to the deformed
image, with the original imageI. Ideally, both fig-
ures should be identical. Indeed, the images in Fig-
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ure 2 demonstrate that the deformable registration
algorithm recovers the deformation transformation.

In Figure 3, we display the exact deformation
field corresponding to the deformation transforma-
tion between the imagesI andS (on the left) and
the deformation field determined by the deformable
registration algorithm, and note that visually the two
deformation fields are almost identical. To quantita-
tively compare the exact and computed deformation
fields, and for future reference, we compute the
mean square difference (MSD) between the fields.
For the deformation fields shown in Figure 2, the
MSD is 7.2 · 10−2. The minimum possible MSD
between two fields is 0 (corresponding to no differ-
ence between the images), and the maximum possi-
ble MSD is 1 (corresponding to a large difference).

B. Ordinary registration of a noisy deformed image

In this section, we present the registration results
obtained upon registering the noisy deformed im-
agesSδ with the original imageI for increasing
noise variancesδ. See Eq. (3). Figure 4 shows the
noisy deformed imagesSδ for δ = 0.1, . . . , 0.8.
In Figure 5, we illustrate the deformation fields
produced by the B-spline deformable registration
algorithm upon registering the noisy deformed im-
agesSδ with the original imageI. Recall that the
actual deformation is shown in Figure 3.

A visual comparison of the deformation fields
presented in Figure 5 with the exact deformation
field in Figure 3 indicates that the deformation
registration technique fails to produce physically
meaningful results for noise varianceδ greater
than 0.2. To quantitatively compare the deformation
fields determined by the deformable registration
algorithm in Figure 5 with the exact deformation
field in Figure 3, we compute the mean square
differences (MSD) between the computed and exact
deformation fields for each speckle noise variance
δ. In Table I, we present the mean square values
for each noise varianceδ. For reference, we also
include in the first line of Table I the MSD between
the deformation field produced by the registration
algorithm when the deformed image contains no
noise and the exact deformation field (from Section
V-A).

The results presented in Figure 5 and Table I
indicate that ordinary deformable registration tech-
niques fail to produce an accurate registration result
when one of the images to be registered contains
significant levels of noise. As expected, the level
of failure increases as the speckle noise variance
δ increases. For variances greater than or equal to
0.2 the algorithm fails to produce any meaningful
results.

C. Denoising results

Since ordinary deformable registration of the the
noisy images fails, we study next the effect of de-
noising on the noisy image registration problem. We
apply a mean, median, and Gaussian convolution
filter, as discussed in Section III-B, to the noisy
imageS0.6 and register the denoised images with
the original imageI. In Figure 6, we illustrate
the denoised images and the deformation fields
produced by registering the denoised images with
the original image.

To quantitatively compare the computed defor-
mation fields with the exact deformation, we com-
pute the mean square differences between the defor-
mation fields in Figure 6 and the exact deformation
field in Figure 3. The mean square differences
are 3.0 · 10−1, 3.2 · 10−1, and 4.6 · 10−1, for
mean, median, and Gaussian denoising techniques,
respectively. These mean square differences, com-
bined with a visual comparison of the deformation
fields in Figure 6 with the exact deformation field
in Figure 3, demonstrate that the application of
classical denoising techniques prior to registration
does not enable successful deformable registration
of the noisy imageS0.6 with the original imageI.

D. Multiscale registration of a noisy deformed im-
age

Next, we demonstrate with several image regis-
tration experiments that the multiscale techniques
presented in Section IV-B accurately and efficiently
register the noisy deformed images considered in
Sections V-B and V-C. Consider again the original
image I and the noisy deformed imageS0.6, and
recall that the deformation that maps the deformed
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TABLE I

THE MSDS BETWEEN THE COMPUTED(USING ORDINARY REGISTRATION TECHNIQUES) AND EXACT DEFORMATION FIELDS

FOR INCREASING NOISE VARIANCESδ FOR THE DEFORMATION FIELDS SHOWN INFIGURE 5.

δ 0 0.1 0.2 0.3 0.4
MSD 7.2 · 10−3 1.5 · 10−2 1.9 · 10−2 3.3 · 10−1 3.6 · 10−1

δ 0.5 0.6 0.7 0.8 0.9
MSD 4.3 · 10−1 4.4 · 10−1 4.5 · 10−1 4.8 · 10−1 5.7 · 10−1

(moving) image to the original (fixed) image is
given by the deformation field in Figure 3.

1) Single-node multiscale registration:In this
section, we use Algorithm I to register the hierarchi-
cal scales of the noisy imageS0.6 with the original
imageI. In Figure 7, we illustrate the hierarchical
multiscale decomposition of the noisy imageS0.6,
and in Figure 8, we illustrate the deformation fields
produced by the single-node multiscale registration
algorithm.

In Table II, we calculate the MSDs between the
deformation fields obtained upon registering the
hierarchical scales of the noisy deformed image
with the original image and the exact deformation
field.

The deformation fields shown in Figure 8 and
the mean square differences in Table II demonstrate
that the multiscale registration method is successful
for registration of the noisy deformed imageS0.6

with the original imageI. Visually comparing the
deformation fields in Figure 8 with the exact de-
formation in Figure 3, we see that the deformation
fields obtained upon registering the coarse scales of
the noisy deformed image with the original image
are a good approximation for the actual deformation
field. The MSDs indicate that the first few coarse
scales produce the most accurate registration, as
expected. As more detail, and hence noise, is added
in increasing scales, the registration becomes less
accurate for higher scales. However, it is clear both
from the deformation fields in Figure 8 and the
MSDs in Table II that all scale registrations of
the multiscale registration technique produce very
accurate results. Since both ordinary deformable
registration of the noisy deformed image and the
application of classical denoising algorithms prior

to registration failed to produce accurate results for
noise variancesδ greater than 0.2, and we are able
to accurately register the deformed noisy image
with variance 0.6, we conclude that the multiscale
single-node registration technique is a significant
improvement over ordinary registration.

2) Iterated multiscale registration:In this sec-
tion, we register the noisy deformed imageS0.6

with the original imageI using (the single-node ver-
sion of) Algorithm III. That is, we first decompose
the noisy deformed imageS0.6 into 8 hierarchical
scales using the multiscale hierarchical decompo-
sition presented in Section IV-A. We then register
the first scale ofS0.6 with I, and use the resulting
transform parameters to register the second scale
of S0.6 with I. This process is then iterated, at
the last stage using the transformation parameters
obtained by registering the seventh scale ofS0.6

with I as the starting parameters for registering the
eighth scale ofS0.6 with I. In Table III, we compute
the MSDs between the computed deformation fields
using the iterated multiscale registration algorithm
with the exact deformation field, and in Figure 9,
we illustrate the deformation field produced by the
final iteration.

The results presented in Table III and Figure
9 demonstrate that the iterated multi-scale reg-
istration algorithm is a significant improvement
over ordinary deformable registration techniques.
Additionally, the results of the iterated multiscale
algorithm are more accurate than those obtained via
Algorithm I (single-node multiscale registration),
as indicated by the MSDs in Table III. However,
the main improvement of the iterated algorithm
over the single-node multiscale algorithm is the
improvement in computation time. Working on a
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TABLE II

THE MSDS BETWEEN THE COMPUTED AND EXACT DEFORMATION FIELDS OBTAINED UPON REGISTERING THE HIERARCHICAL

SCALES OF THE NOISY IMAGE WITH THE ORIGINAL IMAGE(USING ALGORITHM I).

Scale 1 2 3 4
MSD 1.7 · 10−2 1.1 · 10−2 9.5 · 10−3 1.0 · 10−2

Scale 5 6 7 8
MSD 1.0 · 10−2 1.1 · 10−2 9.4 · 10−2 1.0 · 10−1

TABLE III

THE MSDS BETWEEN THE COMPUTED AND EXACT DEFORMATION FIELDS OBTAINED UPON REGISTERING THE NOISY

DEFORMED IMAGES0.6 WITH THE ORIGINAL IMAGE I USING THE SINGLE-NODE ITERATED MULTISCALE REGISTRATION

METHOD (ALGORITHM III).

Iteration 1 2 3 4
MSD 1.6 · 10−2 1.1 · 10−2 6.9 · 10−3 6.4 · 10−3

Iteration 5 6 7 8
MSD 6.3 · 10−3 6.2 · 10−3 6.2 · 10−3 6.2 · 10−3

Dell Dimension 8400 Intel Pentium 4 CPU (3.40
GHz, 2.00 GB of RAM), registering a single scale
of the noisy deformed imageS0.6 with the original
imageI takes an average of 84.5 seconds. The time
required for the registration process increases with
each scale, as each scale contains more detail and
noise than the previous scale. Thus the total time
required to register each scale of the noisy deformed
image S0.6 with the original imageI is approx-
imately 676 seconds. With the iterated multiscale
registration method, the initial registration of the
first scale of the noisy deformed image with the
first scale of the original image takes approximately
29.5 seconds, and each successive iteration takes
approximately 8 seconds. Thus the total time re-
quired to complete all 8 iterations of the iterated
multiscale registration algorithm is approximately
85.5 seconds. Hence we conclude that the iterated
multiscale method is significantly more efficient
than the single-node multiscale method. Moreover,
the mean square differences in Table III indicate
that accurate results can be achieved by iterating
the iterated multiscale registration algorithm until
the fourth or fifth iteration, which further reduces
the computation time.

3) Increasing the noise variance:Finally, we
demonstrate that the iterated multiscale registration
algorithm produces accurate results for noise vari-
ancesδ significantly greater than those at which
ordinary deformable registration fails. In Figure 10,
we illustrate the noisy deformed imagesSδ for very
large values of the noise varianceδ (δ = 1, . . . , 6),
and in Figure 11, we illustrate the deformation fields
computed using the single-node iterated multiscale
registration algorithm (Algorithm III) to register
the noisy deformed imagesSδ with the original
image I for each δ illustrated in Figure 10. In
Table IV, we illustrate the MSDs between the com-
puted and exact deformation fields. These results
demonstrate that the iterated multiscale registration
algorithm accurately registers the noisy deformed
image with the original image for noise variances
that are significantly greater than those at which
ordinary registration fails. Recall from Section V-
B that ordinary deformable registration of a noisy
deformed image with a non-noisy fixed image fails
for noise variancesδ greater than 0.2. In Figure
11 and Table IV, we demonstrate that the iterated
multiscale registration algorithm produces accurate
results for noise variancesδ as large as 6. Moreover,
the iterated multiscale registration algorithm is more
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accurate than ordinary deformable registration when
the images contain no added speckle noise. Recall
that the MSD between the exact and computed
deformation field in Section V-A obtained upon
registering the non-noisy deformed imageS with
the non-noisy original imageI using B-splines
deformable registration is7.2 · 10−3. Using the
iterated multiscale registration algorithm, the MSD
between the computed and exact deformations fields
is 1.8 ·10−3. Thus the iterated multiscale algorithm
improves the accuracy of deformable registration
even when the images do not contain added noise.

E. Registration of a noisy deformed image with a
noisy fixed image

In this section, we consider the case in which
both images to be registered contain significant
levels of noise. We add speckle noise of variance 0.6
to the original imageI, and denote this noisy image
I0.6. Our goal is to register the noisy deformed
image S0.6 with the noisy fixed imageI0.6. In
Figure 12, we illustrate both of the noisy images,
as well as the deformation field produced upon
registering the noisy deformed imageS0.6 with the
noisy original imageI0.6 using ordinary B-splines
deformable registration techniques.
A visual comparison of the computed deformation
field in Figure 12 with the exact deformation field
in Figure 3 indicates that ordinary deformable reg-
istration of the noisy images fails. The MSD in this
case is4.4 · 10−1.

1) Multi-node registration: Since ordinary de-
formable registration of the noisy images fails, we
register the images using our multiscale multi-node
algorithm (Algorithm II). That is, we apply the
multiscale decomposition to both of the images
I0.6 and S0.6 and register thek-th scale ofS0.6

with the k-th scale ofI0.6 for k = 1, 2, . . . , 8 (we
use m = 8 hierarchical steps in the multiscale
decomposition of each image). The deformation
fields obtained upon registering the scales ofS0.6

with the scales ofI0.6 are illustrated in Figure
13. A visual comparison of the deformation fields
in Figure 13 with the exact deformation field in
Figure 3 indicates that the multi-node registration

algorithm is successful. The corresponding MSDs
are shown in Table V.

2) Iterated multiscale registration:In this sec-
tion, we register the noisy deformed imageS0.6

with the noisy original imageI0.6 using (the multi-
node version of) Algorithm III. That is, we first
decompose the noisy deformed imageS0.6 and the
noisy original imageI0.6 into 8 hierarchical scales
each, using the multiscale hierarchical decomposi-
tion presented in Section IV-A. We then register the
first scale ofS0.6 with the first scale ofI0.6, and
use the resulting transform parameters to register
the second scale ofS0.6 with the second scale
of I0.6. This process is then iterated, at the last
stage using the transformation parameters obtained
by registering the seventh scale ofS0.6 with the
seventh scale ofI0.6 as the starting parameters
for registering the eighth scale ofS0.6 with the
eighth scale ofI0.6. In Table VI, we compute the
MSDs between the computed deformation fields
using the iterated multiscale registration algorithm
with the exact deformation field, and in Figure 14,
we illustrate the deformation field produced by the
final iteration.

The results presented in Table VI and Figure 14
demonstrate that the iterated multi-scale registration
algorithm is a significant improvement over ordi-
nary deformable registration techniques. Addition-
ally, the results of the iterated multiscale algorithm
are more accurate than those obtained via Algorithm
II (multi-node multiscale registration), as indicated
by the MSDs in Table VI. Additionally, the iterated
algorithm is computationally more efficient than
Algorithm II.

3) Increasing the noise variance:Finally, we
demonstrate as in Section V-D.3 that the iterated
multiscale registration algorithm produces accurate
results when both of the images contain speckle
noise of variance significantly greater than the
level at which ordinary deformable registration fails.
In Figure 15, we illustrate the deformation fields
computed using the iterated multiscale registration
algorithm to register the noisy deformed imageSδ
with the noisy original imageIδ for increasing
noise variancesδ. In Table VII, we illustrate the
mean square differences between the computed and



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 1, NO. 1, MAY 2006 13

TABLE IV

THE MSDS BETWEEN THE COMPUTED AND EXACT DEFORMATION FIELDS OBTAINED UPON REGISTERING THE NOISY

DEFORMED IMAGESSδ WITH THE ORIGINAL IMAGE I FOR INCREASING NOISE VARIANCESδ USING THE SINGLE-NODE

ITERATED MULTISCALE REGISTRATION METHOD(ALGORITHM III).

δ 0 0.4 0.8 1
MSD 1.8 · 10−3 4.2 · 10−3 9.9 · 10−3 7.2 · 10−2

δ 2 3 4 6
MSD 1.4 · 10−2 1.3 · 10−2 1.7 · 10−2 6.4 · 10−2

TABLE V

THE MSDS BETWEEN THE COMPUTED AND EXACT DEFORMATION FIELD OBTAINEDUPON REGISTERING THE HIERARCHICAL

SCALES OF THE NOISY DEFORMED IMAGES0.6 WITH THE HIERARCHICAL SCALES OF THE NOISY ORIGINAL IMAGEI0.6 (USING

ALGORITHM II).

Scale 1 2 3 4
MSD 1.2 · 10−2 1.2 · 10−2 1.0 · 10−2 1.1 · 10−2

Scale 5 6 7 8
MSD 1.2 · 10−2 1.7 · 10−2 1.8 · 10−2 1.9 · 10−2

TABLE VI

THE MSDS BETWEEN THE COMPUTED AND EXACT DEFORMATION FIELD OBTAINEDUPON REGISTERING THE NOISY

DEFORMED IMAGE S0.6 WITH THE NOISY ORIGINAL IMAGE I0.6 USING THE MULTI-NODE ITERATED MULTISCALE

REGISTRATION METHOD(ALGORITHM III).

Iteration 1 2 3 4
MSD 1.3 · 10−2 1.2 · 10−2 1.0 · 10−2 1.0 · 10−2

Iteration 5 6 7 8
MSD 1.0 · 10−2 9.5 · 10−3 9.0 · 10−3 8.0 · 10−3

exact deformation fields. These results demonstrate
that the iterated multiscale registration algorithm
accurately registers the noisy deformed image with
the noisy original image for noise variances signif-
icantly greater than those at which ordinary tech-
niques fail; recall that ordinary deformable regis-
tration failed whenonly oneof the images to be
registered contain noise of variance 0.2. In Figure
16, we illustrate the noisy original and deformed
imagesI2 and S2. These images contain speckle
noise with varianceδ = 2. As demonstrated by the
deformation field in Figure 15, the multi-node it-
erated multiscale registration algorithm (Algorithm
III) accurately registers these very noisy images.

F. Extension to three-dimensional images

Finally, we demonstrate that the the multiscale
registration technique accurately registersthree-
dimensionalimages. To study the three-dimensional
(3D) registration problem, we use four-dimensional
computed tomography (4D CT) images acquired
with a GE Discovery-ST Scanner (GE Medical
Systems, Miluakee, WI) at the Stanford Univer-
sity Medical Center. Four-dimensional computed
tomography techniques allows one to acquire im-
age data at specified phases over several respi-
ratory cycles, and then combines the data into
three-dimensional phase-binned images. We ob-
tained eight phase bins (i.e. eight 3D CT images)
corresponding to eight different breathing phases of
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TABLE VII

THE MSDS BETWEEN THE COMPUTED AND EXACT DEFORMATION FIELDS OBTAINED UPON REGISTERING THE NOISY

DEFORMED IMAGESSδ WITH THE NOISY IMAGE Iδ FOR INCREASING NOISE VARIANCESδ USING THE MULTI-NODE ITERATED

MULTISCALE REGISTRATION METHOD (ALGORITHM III).

δ 0 0.4 0.8 1 1.5 2
MSD 1.8 · 10−3 9.1 · 10−3 3.7 · 10−2 4.4 · 10−2 2.0 · 10−2 9.1 · 10−2

the respiratory cycle. Each phase consists of 80 two-
dimensional images, orslices, which are combined
to obtain the 3D images. The slice thickness for
each phase is 2.5-mm, and the eight breathing
phases recorded contain approximately 400 MB of
data in DICOM image format.

In Figure 17, we illustrate two corresponding
sample slices (slice 25) from the first and eighth
phases of the 4D CT data set.

To register the 3D CT images with one another
(i.e. to register each phase of the respiratory cycle
with, for example, the inhale phase), we first extend
the hierarchical multiscale decomposition of [18] to
3D images. Although the multiscale decomposition
presented in [18] was done in two dimensions
only, the hierarchical multiscale expansion in Eq.
(6) is independent of the image dimensionality. To
implement the iterated multiscale decomposition in
3 dimensions, we cover the image domainΩ with
a grid (xi := ih, yj := jh, zk := kh), and letD+,
D−, andD0 denote the forward, backward, and cen-
tered divided differences, respectively. Then the 3D
extension of the iterated multiscale decomposition
given by Eq. (12) in Section IV-A is:
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Upon decomposing each 3D image, we use the
iterated multi-node multiscale registration algorithm
(Algorithm III) to register each scale of the moving
3D image with each scale of the fixed 3D image.
In Figure 18, we compare the voxel-wise intensity
difference between the two sample slices shown in
Figure 17 before and after iterated multiscale de-
formable registration. In these images, black repre-
sents exact intensity agreement and brighter regions
indicate intensity disagreement. A comparison of
the intensity differences before and after registration
demonstrates that the iterated multiscale registration
method indeed recovers the difference between the
two images. Similar results are obtained with all
other slices and phases. Working on a Dell Di-
mension 8400 Intel Pentium 4 CPU (3.40 GHz,
2.00 GB of RAM), the total required computation
time for both the 3D multiscale decomposition and
iterated multiscale multi-node registration algorithm
is on the order of approximately 15-30 minutes,
depending on the data set.

VI. CONCLUSIONS

While there are many existing deformable regis-
tration techniques, common approaches are shown
to fail when one or more of the images to be
registered contains even moderate levels of noise.
Further, for high levels of noise, image registration
fails even when classical denoising algorithms are
applied to the images before registration. We have
presented deformable image registration techniques
based on the hierarchical multiscale image decom-
position of [18]. The multiscale decomposition of
an image results in a hierarchical representation that
separates the coarse and fine scales of the image.
We presented three separate multiscale registration
algorithms based on this decomposition. In the
first, we follow a single-node multiscale registration
strategy in which we register the scales of the
moving image with the fixed image, and use a
weighted average to estimate the actual deformation
between the images. In the second, we use a multi-
node multiscale registration method in which we
register the scales of the moving image with the
scales of the fixed image, and use a weighted aver-
age to estimate the actual deformation between the

images. Finally, in the third algorithm, we follow
an iterated multiscale registration strategy. Using
images in which the precise deformation between
the fixed and moving images is known, we have
shown that the multiscale registration algorithms are
indeed accurate for levels of noise much higher than
the noise levels at which ordinary deformable regis-
tration techniques fail. Moreover, the iterated mul-
tiscale registration technique significantly reduces
the computation time necessary to obtain accurate
registration of noisy images. We have also demon-
strated that the multiscale techniques improve the
accuracy of deformable registration even when the
images to be registered do not contain additional
noise. Additionally, we have extended the hierar-
chical multiscale decomposition of [18] to three-
dimensional images, and have demonstrated the ac-
curacy and efficiency of our multiscale registration
techniques for the registration of three-dimensional
images. Finally, we would like to emphasize that
using the multiscale decomposition is independent
of the registration method and of the noise model.
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Original Image Deformed Image

Fig. 1. The mid-sagittal brain sliceI (shown on the left) and the deformed imageS (shown on the right).

Original Image Registration Result

Fig. 2. The result (shown on the right) upon registering the deformed imageS with the original imageI (shown on the left).

Exact Deformation Field Computed Deformation Field

Fig. 3. The exact deformation field corresponding the the deformation transformation betweenI andS (shown on the left) and the
deformation field produced by the registration algorithm upon registering the deformed imageS with the original imageI (shown
on the right).
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0.80.70.60.5

0.40.30.20.1

Fig. 4. The noisy imagesSδ , for increasing values ofδ.

0.80.70.60.5

0.40.30.20.1

Fig. 5. The deformation fields produced by the registration algorithm upon registering the noisy deformed imagesSδ with the
original imageI, for increasing values ofδ.
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Median FilterMean Filter Gaussian Filter

Fig. 6. The denoised images and registration results obtained upon applying mean, median, and Gaussian filters prior to registering
the noisy deformed imageS0.6 with the original imageI.

Scale 1 Scale 2 Scale 3 Scale 4

Scale 5 Scale 6 Scale 7 Scale 8

Fig. 7. The multiscale decomposition of the noisy deformed imageS0.6.
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Scale 1 Scale 2 Scale 3 Scale 4

Scale 5 Scale 6 Scale 7 Scale 8

Fig. 8. The deformation fields obtained upon registering the hierarchical scales of the noisy imageS0.6 with the original image
using Algorithm I.

Fig. 9. The deformation field obtained upon registering the noisy deformed imageS0.6 with the original image using the single-node
iterated multiscale registration method (Algorithm III).
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δ=0 δ=0.4 δ=1δ=0.8

δ=2 δ=3 δ=4 δ=6

Fig. 10. The noisy deformed imagesSδ for increasing noise variancesδ.

δ=6δ=4δ=3δ=2

δ=1δ=0.8δ=0.4δ=0

Fig. 11. The deformation fields obtained upon registering thenoisy deformed imageSδ with the original imageI using Algorithm
III for increasing noise variancesδ.
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Noisy Original Image Noisy Deformed Image Deformation Field

Fig. 12. The noisy mid-sagittal brain sliceI0.6 (shown on the left), the noisy deformed imageS0.6 (shown in the center), and the
deformation field (shown on the right) produced upon registering S0.6 with I0.6 using ordinary deformable registration techniques.

Scale 1 Scale 2 Scale 3 Scale 4

Scale 5 Scale 6 Scale 7 Scale 8

Fig. 13. The deformation fields obtained upon registering thenoisy deformed image with the noisy fixed image using the multi-node
registration algorithm (Algorithm II).

Fig. 14. The deformation field obtained upon registering the noisy deformed imageS0.6 with the noisy original imageI0.6 using
the multi-node iterated multiscale registration method (Algorithm III).
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δ=0 δ=0.4 δ=0.8

δ=1 δ=1.5 δ=2

Fig. 15. The deformation fields obtained upon registering thenoisy deformed imageSδ with the noisy original imageIδ using
the multi-node iterated multiscale algorithm (Algorithm III) for increasing noise variancesδ.

Noisy Original Image (δ=2) Noisy Deformed Image (δ=2)

Fig. 16. The noisy original and deformed imagesI2 andS2.

Fig. 17. Two corresponding sample slices from two breathing phases of the same patient.
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Fig. 18. The voxel-wise intensity difference between two corresponding slices before and after iterated multiscale deformable
registration.
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sue irradiation is a valid strategy and the goal for manag-
ing local tumor control with a minimum of normal tissue
complications. The details on radiobiology are discussed
in Chapter 3 “Radiobiology of IMRT.”

Three-dimensional conformal radiation therapy
(3DCRT) is a method of irradiating target volume defined
in a three-dimensional anatomic image of the patient with
a set of x-ray beams individually shaped to conform the
two-dimensional beam’s eye view projection of the target.
3DCRT became feasible with the development of com-
puted tomography (CT). The development of spiral and
multislice CT scanners has made the acquisition of large
data sets practical. The reconstructed images, acquired with
patients in the treatment position, provide a model on
which geometric and dosimetric computations can be
applied. These data sets can be acquired with spiral scan-
ners capable of recording the transmission data needed to
reconstruct 50 to 100 transverse image planes spaced 2 to
5 mm apart. Given adequate immobilization devices to
help patients achieve and hold their treatment position for
the duration of the image acquisition, these fast scanners
provide excellent data sets that can be used for treatment
planning. The transmission data are used to reconstruct
a three-dimensional data set consisting of Hounsfield num-
bers associated with voxels. The development of the Digital
Imaging and Communication in Medicine (DICOM) stan-
dard and its various extensions for data exchange has made
possible the use of CT data sets acquired with the equip-
ment from one vendor with treatment planning systems
from another vendor and the ability to treat patients with
equipment from yet another vendor. The transfer of these
data over computer networks has improved the efficien-
cy and accuracy of the entire treatment planning and deliv-
ery process.

Evolution from 3DCRT to IMRT 
Intensity-modulated radiation therapy (IMRT) emerged
in clinical practice as a result of the development of 3DCRT

Radiation therapy (RT) as a means of managing cancer has
its roots in the discipline of radiology. From the time
Roentgen first discovered x-rays, two-dimensional trans-
mission images of the human body provided unprecedented
imagery of bony landmarks, allowing radiologists to deduce
the location of internal organs. Using planar radiographs,
radiologists planned cancer treatments by collimating rec-
tangular fields encompassing the presumed tumor loca-
tion. Additional blocks placed daily to match marks on the
patient’s skin and later the use of low-temperature melt-
ing dense alloys provided a cookie-cutter approach to treat-
ing the two-dimensional projections of the tumor volumes.

Human anatomy and tumor shapes, however, are inher-
ently three-dimensional. By treating a large amount of near-
by normal tissue, physicians were limited by the tolerance
of the normal tissue they were treating. Additionally, it was
not possible to take the three-dimensional structures into
consideration because of the limitations of early dose cal-
culations. The advantage of being able to treat a tumor tar-
get conformally can be appreciated by a simple example.
Assume that the tumor is a sphere of 5 cm in diameter; it
would have a volume of 65.4 cc. If one irradiates it with
square fields, directed at the six faces of the cube contain-
ing the sphere (an anatomic impossibility that we will allow
for the sake of making a theoretical point), a high-dose vol-
ume would be created within the sphere containing 125 cc.
This represents the three-dimensional nonconformal sit-
uation. If one were to treat the volume with circular fields,
directed toward the sphere from all directions (which, again,
is anatomically impossible), the high dose would be lim-
ited to the sphere itself. Approximately 60 cc of normal tis-
sue would be spared. The reduction of tissue irradiated is
a factor of 6/π or about half. This reduction in normal
tissue irradiation should theoretically improve the thera-
peutic ratio and allow the tumor target volume to be treat-
ed to a higher dose, thereby improving the probability of
tumor control. Other factors play critical roles as well.
Tumor biology has a great deal to do with the actual tumor
control achieved, but the basic idea of reducing normal tis-
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in the 1980s. Although the exact beginning of the modal-
ity depends on one’s definition of IMRT, it is generally
agreed on that the widespread implementation and real-
ization of the technique occurred in the United States in
the early 1990s with the commercially available Peacock
IMRT planning system and MIMiC fan beam delivery device
(North American Scientific, NOMOS Radiation Oncology
Division, Cranberry Township, PA).1,2 This was then fol-
lowed by the cone beam multileaf collimator (MLC)-based
IMRT in the mid-1990s. MLC allows the rapid and con-
trollable adjustment of field aperture and is thus ideally
suited for dynamic radiation beam modulation. In Figure
2-1, different IMRT modalities currently available or under
intense investigation are summarized. Physically, a com-
mon feature of these IMRT techniques is that they all
attempt to enhance control over the three-dimensional
dose distribution through the superposition of a large num-
ber of independent segmented fields from either a num-
ber of fixed directions or from directions distributed on
one or multiple arcs.

Intensity modulation adds a new degree of freedom to
RT planning and provides a more effective means to pro-
duce tightly conformal dose distributions in complex treat-
ment situations. The objective of this chapter is to provide
an overall comprehension of IMRT and to review the physics
aspect of this technology. In Figure 2-2, the overall treat-
ment process of IMRT is illustrated. The key steps involved
in the process are discussed in separate sections. In the
remainder of this introductory section, we briefly describe
the IMRT delivery modes listed in Figure 2-1. Given that
fixed-gantry IMRT is by far the most popularly imple-
mented technique, emphasis is given to this mode first.

Fixed-Gantry IMRT
Fixed-gantry IMRT is similar to 3DCRT in that a number
of fixed beam directions are used (Figure 2-3A). In this
mode, treatment planning is generally done in two steps.
First, the dose optimization engine generates a set of inten-
sity profiles, one for each incident beam. Depending on the
treatment planning system, the optimized beam profile can
be continuous or in a form that is discretized in space and
intensity. Without loss of generality, an incident beam is
assumed to be already divided into a grid of beamlets, and
each beamlet can take a fixed number of intensity levels.
The beamlet width (dimension perpendicular to the leaf
travel direction) is limited to the MLC leaf width. The beam-
let length, or the step size of MLC leaf movement defined
as the smallest step in the leaf travel direction, is a para-
meter specified by the user. A smaller beamlet size or a larg-
er number of intensity levels offers better spatial or intensity
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FIGURE 2-1.  Currently available intensity-modulated radiation thera-
py (IMRT) techniques. MLC = multileaf collimator.
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FIGURE 2-2.  The intensity-modulated radiation therapy (IMRT) treat-
ment process. CT = computed tomography; MRI = magnetic resonance
imaging.

FIGURE 2-3.  A schematic drawing of (A) fixed-gantry intensity-modulated
radiation therapy (IMRT); (B) slice-by-slice fan beam delivery; (C) tomother-
apy delivery; and (D) cone beam–based IMRT.



resolution but requires more MLC segments for delivery.
Typically, the size of the beamlet and the number of intensi-
ty levels in current IMRT treatment are set to 1 × 1 cm and
10, respectively. Figure 2-4 shows an example of an intensi-
ty map for a head and neck IMRT treatment, obtained using
the CORVUS (North American Scientific) ) inverse planning
system. Occasionally, the beamlet size or the number of inten-
sity levels is varied to meet a specific clinical requirement.

There are many ways to produce a desired fluence map.
Conceptually, physical compensators are the most straight-
forward. The most popular delivery technique is, however,
based on computer-controlled MLC. In this approach, an
intensity map is decomposed into a set of MLC-formed aper-
tures by using a leaf sequencing algorithm.The MLC sequences
are recorded in a computer file, which is then used to control
the MLC movement for plan delivery. It is important to note
that an intensity map, regardless of its shape, can always be
expressed as a superposition of a number of segmented fields
(for a given intensity map, generally, a number of ways exist
for this decomposition, leading to numerous leaf sequenc-
ing algorithms). Depending on the relationship between MLC
leaf movements and radiation dose delivery, the delivery can
generally be divided into step-and-shoot delivery and dynam-
ic modes. The former is the simplest computer-controlled
delivery scheme of the fixed-gantry IMRT, in which MLC leaf
movements and dose deliveries are done at different instances.
A leaf sequence file consists of alternatives of dose-only and
motion-only instances. Dynamic delivery differs from a step-
and-shoot mode in that leaf movement and dose delivery are
realized simultaneously.

Arc-Based IMRT
Arc-based treatment delivery has a long history in RT. An
early implementation of this method was the so-called
Takahashi arc, in which the beam aperture dynamically fol-
lows the beam’s eye view projection of the target. Stereotactic
radiosurgery based on cylindric cones or micro-MLC often
uses the arc delivery technique to “spread”the radiation dose
to different regions of the brain to avoid overdosing the nor-
mal brain tissue. Conformal arc therapy can produce excel-
lent dose conformation to a simple target. However, the target
volumes often exhibit significant deviation from the ideal
spherical or ellipsoidal shape. In this case, arc-based IMRT
treatment, which was first proposed by Dr. Yu4, provides a
viable option to improve the dose distributions through
intensity modulation. The three different forms of arc-based
IMRT deliveries are schematically shown in Figure 2-3, B to
D, and their features are summarized below.

Fan Beam IMRT 
A schematic drawing of the fan beam IMRT is shown in
Figure 2-3B. The delivery is realized on a slice-by-slice man-
ner, in which each slice covers 2 to 4 cm in the longitudinal
direction and 20 cm in diameter. North American Scientific’s

Peacock system, which includes the PEACOCK inverse treat-
ment planning system and the MIMiC collimator, is used
for this type of treatment. The planning system uses 54 equal-
ly spaced beams and optimizes the beamlet maps of each
beam. The nominal beamlet sizes on the isocenter plane are
1 × 0.4 cm, 1 × 1 cm, and 1 × 2 cm. An advantage of this
modality is that the MIMiC collimator can be retrofitted to
an existing linear accelerator without an MLC, allowing IMRT
treatment without a substantial hardware upgrade. Use of
the arc delivery mode often results in a superior dose dis-
tribution in comparison with fixed-gantry IMRT with five
to nine beams for deep-seated tumors because of the involve-
ment of a large number of beams in an arc-based treatment.3

Tomotherapy 
The tomotherapy machine has recently become commer-
cially available (TomoTherapy Inc., Madison, WI). The
delivery is also achieved slice by slice but in a helical (or
spiral) fashion in which the couch moves at a constant speed
during the gantry rotation (see Figure 2-3C). Radiation
from the linear accelerator first passes through a single
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FIGURE 2-4.  Intensity patterns of a seven-field intensity-modulated
radiation therapy (IMRT) head and neck treatment obtained using the
CORVUS IMRT planning system. 
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set of primary collimator jaws, which shape the beam into
a rectangular slit that is 40 cm long and up to 5 cm wide at
the isocenter. The MLC that is used to modulate the beam
intensity consists of 64 tungsten leaves that move across a
narrow opening to control the radiation passing through
to the target. The computer-controlled MLC has two sets
of interlaced leaves that move in and out very rapidly to
constantly modulate the beam.

Cone Beam–Based IMRT 
To date, the majority of work on arc-based IMRT has been
focused on modulated fan beams, and little development has
been done using cone beams. The concept of intensity-
modulated arc therapy (IMAT) was first proposed in 1995
(see Figure 2-3D), and manufacturers have provided the
technical capability for dynamic arc delivery.4 However, IMAT
has not been widely implemented. The lack of enthusiasm
for IMAT stems in part from the shortage of effective plan-
ning tools and reliable quality assurance (QA) procedures.
Reports from several institutions, however, support the notion
that a cone beam–based arc technique can generate superi-
or dose distributions, at least for some deep-seated tumors.5–8

Cone beam arcs use the arc feature of fan beam IMRT yet
take advantage of the cone beam modulation of the fixed-
gantry IMRT. To compute dose distributions, an arc is approx-
imated by many fixed fields at small intervals of gantry
rotation. Physically, however, the achievement of intensity
modulation for cone beam delivery is less straightforward
in comparison with its fan beam counterpart. Unlike a slice-
by-slice delivery, in which the radiation across the slice can
be segmentally blocked from the side by multiple indepen-
dent vanes, the MLC-shaped aperture cannot change from
one shape to another fast enough as the gantry rotates. This
problem can be solved, at least in principle, by lowering the
gantry rotation speed because, in reality, it is the relative
speed between the gantry rotation and MLC leaf movement
that determines the level of achievable intensity modulation.

An alternative approach is to use multiple cone beam arcs,
as proposed by Yu.4 At each gantry angle, the beam is con-
sidered to be a superposition of a series of subfields, each with
uniform intensity from these arcs. When a single arc is used
for treatment, the technique is sometimes called aperture-
modulated arc therapy.At this time, there are no studies defin-
ing how many arcs are sufficient for any disease sites. In Figure
2-5,a comparison of average dose-volume histograms (DVHs)
of 3DCRT, IMRT, and IMAT prostate plans for ten patients
with prostate cancer is shown.9 The solid line is IMAT, the
dotted line is IMRT, and the dot-dash line is 3DCRT. It is evi-
dent that IMAT yields better target coverage and improved
bladder and rectum sparing in comparison with fixed-gantry
IMRT. Finally, being able to modulate the dose rate while the
gantry rotates is a desirable feature, further enhancing the
performance of the cone beam arc–based IMRT. To date,
however, no linear accelerator manufacturers have provid-
ed such technical capability in the clinical mode.

Treatment Planning

RT planning requires the calculation of a set of parameters
for the delivery of a radiation dose to the patient. Although
manual forward planning may be possible in some sim-
ple cases (see the examples below), computer optimization
of the beam parameters is almost always used for IMRT
treatment planning because of the vast size of search space
involved in the problem. In general, this is realized using
an inverse treatment planning technique, which derives the
optimal beam parameters by starting from a prescribed or
desired dose distribution. Although the details of the inverse
planning calculation depend on the delivery method, the
principle behind the algorithms is essentially the same.
Inverse treatment planning is, in fact, a special case of gen-
eral inverse problem encountered in the sciences and engi-
neering, which attempt to derive the optimal input
parameters that will produce the desired output. Before
discussing the inverse planning algorithms in detail, it is
illustrative to briefly summarize the features of the forward
planning approach.

Forward Planning for Segment-Based Treatment
There are two aspects in RT planning: dose conformity and
dose uniformity inside the target.What it takes to accomplish
the two goals may be different. When the shape of the target
is regular and/or when only two or three incident beams are
employed, the isodose shaping can often be achieved by beam
shaping with an MLC. To achieve a uniform dose distribu-
tion within the target volume, one only needs to accommo-
date the geometric variation of the external contour. Physical
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FIGURE 2-5.  Average dose-volume histograms for 10 patients with
prostate cancer planned using three-dimensional conformal radiation
therapy (dot-dash line), intensity-modulated radiation therapy (dotted
line), and intensity-modulated arc therapy (solid line). GTV = gross tumor
volume. (To view a color version of this image, please refer to the CD-
ROM.)



or dynamic wedges are usually used if the patient contour
changes monotonically or in some simple hinge field arrange-
ments. In a more general situation, additional MLC-shaped
field segments can be introduced to boost a “cold” region or
reduce a “hot” region. Examples of this type of case include
but are not limited to opposed tangent field breast treatment
and anterior-posterior treatment of Hodgkin’s disease. For
illustration purpose, a forward multisegment breast treat-
ment plan is considered.

The multisegment breast plan starts with the standard
opposed tangent fields. In many cases of breast cancer,
obtaining a uniform dose within the target volume could
be problematic when this approach used. To improve on
this, one may proceed to sequentially introduce additional
MLC field segments to one or both beam directions to boost
the cold region(s) under the guidance of dose distribution
in the plane perpendicular to the incident beam direction.
Figure 2-6 illustrates the three segments of the lateral and
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FIGURE 2-6.  Opposed tangential fields for the treatment of a patient with left-sided breast cancer (top row). The middle and bottom rows are the
multileaf collimator shapes of the three segments of the medial and lateral fields chosen to improve dose uniformity within the treatment volume.
(To view a color version of this image, please refer to the CD-ROM.)



medial fields. In this plan, the first segments in the lateral
and medial fields and their relative weights are determined
using conventional techniques. A physical wedge of 30º is
placed on the lateral beam. The two additional segments in
each beam direction are then introduced sequentially, and
their weights and apertures are adjusted using trial and error
to achieve a more uniform dose distribution. The isodose
distributions for both plans are shown in Figure 2-7. The
maximum dose and the volume receiving a high dose in a
multisegment plan are significantly reduced.

Multisegment-based forward planning techniques can
be applied only to some relatively simple cases in which the
high-dose region is primarily defined by the conventional
treatment fields. When isodose conformity to an irregu-
larly shaped target is needed, multiple beams (typically
more than five) with a higher level of intensity modulation
are needed. In this situation, it becomes tedious to use for-
ward planning–based approaches, and more sophisticated
inverse planning techniques become necessary.

Inverse Planning
Inverse planning uses a computer optimization algorithm
to determine the optimal beam parameters that lead to a
solution as close as possible to the desired output.
Mathematically, the problems of image reconstruction,
image restoration, signal process, and investment portfo-

lio management can all be formulated as an inverse prob-
lem. Roughly speaking, inverse problems can be described
as problems in which the output or consequences are known
but not the cause. The difference between various treat-
ment planning systems lies in the specifications of the input
and output parameters and the criteria used to select the
final solution. Specific to RT, the output is generally spec-
ified by a desired dose distribution, a set of desired DVHs,
or even the tumor control probability (TCP) and normal
tissue complication probability (NTCP) for the involved
structures. The input parameters to be optimized depend
on the delivery scheme. Typically, the number of beams
and their incident directions are determined empirically
before dose optimization. Each incident beam is discretized
into a bixel map (the bixel or  beamlet size is typically 1 ×
1 cm2). The task of inverse planning is then to determine
the optimal bixel map or the relative weights of all of the
beamlets.

To better appreciate the problem, assume that six inci-
dent beams are used for an IMRT treatment. If each beam
is divided into 100 beamlets and each beamlet has 10 per-
missible intensity levels, there would be 106 × 100 physi-
cally realizable plans. It can be shown that the number of
physically realizable solutions for a six-field 3DCRT plan
is much less than this number. When wedges are not used,
there are 106 physically feasible solutions (many of these
can be immediately eliminated from being a candidate treat-
ment plan because they do not produce clinically accept-
able dose distributions). For a given desired dose distribution
D0, the task is to find a solution D in the physically feasi-
ble solution pool {D} that is the same as D0 or, more appro-
priately, differs the least from D0. There are many ways to
pick a D that is a “good” representation of the prescribed
dose D0. A commonly used approach for plan optimiza-
tion is to minimize the distance between D and D0 in the
L2 norm. For therapeutic applications, it is common to
introduce an importance factor r σ to control the relative
importance of the structure σ. This leads to the following
quadratic objective function:

(1)
where rσ is the importance factor that weights the impor-
tance of the structure σ and parameterizes our clinical
trade-off strategy and D0 and Dn are prescribed and cal-
culated doses, respectively. Optimization of this function
is essentially a least squares type of estimation in statisti-
cal analysis. In addition to equation 1, many other types of
objective functions have been proposed for plan opti-
mization. The construct of the objective function plays a
crucial role for the success of IMRT treatment and is wor-
thy of detailed discussion.
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FIGURE 2-7.  Conventional opposed tangential breast (left) and multi-
segment (right) plans. The isodose lines are (from inside to outside) 105,
100, 95, 90, 80, 50, 20, and 10%. A dose of 50.4 Gy was prescribed to
the 90% line. Note that the use of multiple segments improves the dose
uniformity to the breast. (To view a color version of this image, please
refer to the CD-ROM.)  



Models and Model Parameters of Inverse Planning
A common feature of all inverse problems is that they are
generally underdetermined and ill-posed. The selection of
the final solution depends on the underlying assumption
of the model. The objective function quantitatively ranks
a candidate treatment plan, and the optimization of the
function yields the optimal parameters. In conventional
treatment planning, the objective function depends on
beam weights, wedge angles, and orientations, whereas in
IMRT, it is a function of the beamlet weights. Ideally, an
objective function would mimic the decision-making of
experienced oncologists and planners. It would rank a given
solution (corresponding to a set of parameters) in a way
consistent with clinical judgment. In practice, however, a
gap exists between mathematical modeling and clinical
decision-making, and much effort is being devoted to derive
clinically meaningful objective functions for inverse plan-
ning. Because the optimization results depend strongly on
the objective function, there is inevitably subjectivity asso-
ciated with the various dose optimization schemes.
Therefore, it is essential for physicians to carefully evalu-
ate a treatment plan after optimization to ensure that the
“optimal” solution makes clinical sense. Otherwise, the suc-
cess of an optimization is, at best, mathematical.

If an optimization algorithm is to have a genuine impact
on clinical practice, it should incorporate all of the dosi-
metric and radiobiologic knowledge plus an algorithm for
modeling the way in which radiation oncologists and patients
balance the risks and benefits. Despite the availability of high-
speed computers, state-of-the-art inverse planning algo-
rithms, and improved imaging modalities, we are still a long
way from generating truly optimized IMRT treatment plans.
For convenience, it is appropriate to classify the currently
available dose optimization methods into four categories:
(1) dose based, (2) clinical knowledge based, (3) equivalent
uniform dose (EUD) based, and (4) TCP or NTCP based.
The underlying difference between these models lies in which
end points are used to evaluate the treatment plan or which
fundamental quantities are used to define the optimal plan.
In reality, each type of inverse planning formalism has its
own pros and cons in coping with the clinical decision-
making process and in practical implementation. These
are briefly summarized below.

Dose-Based Formalism
The dose and/or dose volume–based optimization is con-
cerned with accurate dose distributions or DVHs of the
involved structures. The quadratic objective function given
in equation 1 represents an example of this type. Frequently,
DVHs and other physical constraints are imposed to describe
certain clinical requirements. The dose or dose volume pre-
scriptions are used implicitly as surrogates of the desired
clinical outcome. At this point, the dose-based approach is
the most widely employed method, as is evidenced by the

fact that all commercial IMRT planning systems have cho-
sen dose-based ranking as the starting point. There are sev-
eral reasons for this. First, the physical dose objectives reflect
the majority of the clinical practice. Although biologic mod-
els are available in both research and clinical systems, the
uncertainty associated with the predictions often outweighs
their guidance. Dose-based objectives will remain the dom-
inant modality of optimization and evaluation for some
time. Second, the physical dose is closely related to the opti-
mization parameters, and simple mathematical models,
such as the quadratic dose difference expressed in equation
1, can be effectively used.

Clinical Knowledge–Based Formalism
It is highly desirable to incorporate clinical end points in
guiding the treatment plan optimization process. The cur-
rently available dose-based objective functions do not truly
reflect the nonlinear relationship between dose and the
response of tumors and normal tissues. In reality, the dose
dependence of the clinical end point of a structure may be
degenerate in the sense that a given clinical end point may
be caused by a variety of dose distributions or DVHs. For
the parotid glands, for instance, it is known that the clinical
end point is the same if 15 Gy is delivered to 67% of the vol-
ume, if 30 Gy is delivered to 45% of the volume, or if 45 Gy
is delivered to 24% of the volume. If the dose-based objec-
tive function, equation 1, is used, the rankings for the three
different scenarios would be different. Even with the use of
dose-volume constraints, it is difficult, if not impossible, to
incorporate this type of knowledge to correctly model the
behavior of the organ in response to radiation. Indeed, a con-
straint in optimization acts as a “boundary condition” dur-
ing the optimization (there are methods of treating
constrained optimization problem into an equivalent uncon-
strained one, with a different objective function) and does
not change the rankings of dosimetrically different plans.

To overcome these dilemmas, a clinical knowledge–based
optimization scheme has recently been developed by Yang
and Xing.10 The central theme of the approach is that clin-
ical outcome data should be used to direct the plan opti-
mization process. In this approach, the quality of a treatment
plan is measured by a heuristically constructed objective
function which depends not only on the dosimetric prop-
erties but also the dose-volume status, which makes it pos-
sible to take advantage of the existing outcome data of the
involved organs. For the parotid glands, for instance, the
three different DVHs mentioned above will be scored equal-
ly by the objective function. The final dose distribution or
DVHs of the glands will be determined by the optimization
algorithm with the consideration of the requirements of
other structures. If one of the three possibilities needs to be
selected, the one that yields better scores in other involved
structures will be favored by the algorithm. The specifics of
the plan selection process will, of course, depend on the geo-
metric and dosimetric details of the particular patient.
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It is important to emphasize that, at this point, clinical
outcome data are sparse and underdetermined and may
have large uncertainties. By “underdetermined,” we mean
that there are not enough clinical data points available to
objectively rank all realizable plans. Thus, it is necessary to
produce an interpolation/extrapolation scheme for plan
ranking. A sensible approach has also been provided in
Yang and Xing’s work based on the well-known dose
response model.10 The clinical knowledge–based model
allows one to more objectively rank treatment plans accord-
ing to their clinical merits without relying on biological
index-based or EUD-based prescriptions. .

EUD-Based Formalism
Optimization of the dose distributions can also be cast into
the realm of EUD, which is one level higher in terms of the
use of biologic information.11,12 The EUD is defined as the
biologically equivalent dose, which, if given uniformly, leads
to the same cell kill as the actual nonuniform dose distri-
bution. It can be expressed as follows:

(2)

In this expression, N is the number of voxels in the anatom-
ic structure of interest, Di is the dose in the i’th voxel, and
a is the tumor- or normal tissue–specific parameter that
describes the dose-volume effect. This formulation of EUD
is based on the power law dependence of the response of a
complex biologic system to a stimulus.

EUD exhibits a dose-response relationship similar to
that of the traditional biologic indices. Therefore, it can be
a surrogate for them and, in the meantime, is closely relat-
ed to the physical dose. The objective function based on
EUD can be expressed in the following:

(3)

where the component subscore fj may be either

for tumors or

for normal tissues. There are several advantages of EUD-
based optimization approaches: (1) the formulae are sim-
ple, (2) the formulae can be applied to both tumors and
organs at risk (OAR) using different parameters, and (3)
there are fewer planning parameters than dose
volume–based or other biologic indices–based optimiza-
tion. It has been shown that EUD-based optimization can
provide the same or better coverage of targets as dose vol-
ume–based optimization and that it offers significantly bet-
ter protection of OAR. These improvements in the dose
distributions to OAR may be due to the fact that there is a
larger search space available in EUD optimization because
the constraint, or the objective, is determined on the basis
of the whole organ rather than the partial volume of the
structure. Thus, EUD optimization can be used to search
for and evaluate multiple plans that may have different
DVHs but the same EUDs. Figure 2-8 shows the dose dis-
tributions for IMRT plans optimized using dose vol-
ume–based and EUD-based objective functions for a patient
with prostate cancer. The OAR are the rectum and blad-
der. All plans used identical configurations of five copla-
nar 18 MV photon beams placed at equally spaced gantry
angles. The plans were normalized to deliver the prescrip-
tion dose of 70 Gy to 99% of the target volume. It is clear
that, for the same minimal target dose, sparing of the OAR
is greatly improved in the EUD-based plan. Furthermore,
a sharp dose gradient at the interface between the target
and OAR is realized.
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FIGURE 2-8.  Sagittal isodose distributions for prostate intensity-modulated radiation therapy plans designed using (A) dose volume–based crite-
ria; (B) equivalent uniform dose (EUD)-based criteria; and (C) EUD-based criteria with target inhomogeneity constraints. Reproduced with permission.
(To view a color version of this image, please refer to the CD-ROM.)
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The EUD concept can also be incorporated into the
framework of physical dose optimization, such as the
method of projection over the convex set.13 In this method,
EUD is implemented as an optimization constraint. At each
iteration of the optimization, if an organ violates an EUD
constraint, a new dose distribution is calculated by pro-
jecting the current one onto the convex set of all dose dis-
tributions fulfilling the EUD constraint. The cost is slightly
more iterations than pure physically constrained opti-
mization. This algorithm is easy to implement and pro-
vides better dose sparing of parallel structure organs for
which physical constraints may be difficult to define.

Biologic Model–Based Formalism
Biologic model–based optimization proponents argue that
plan optimization should be guided by estimates of bio-
logic effects. The biologic effect and the radiation para-
meters are linked by the radiation dose through the use of
a dose-response function. The relationship between the
two is not, however, a one-to-one correspondence. A given
biologic end point may be produced by many possible dose
distributions, which would generally not be equally scored
if a dose-based model was used. In principle, biologically
based models are most relevant for RT plan ranking.11,14–21

However, the dose-response function of various structures
is not sufficiently understood, and at this point, there is
considerable controversy about the models for computing
dose-response indices and their use in optimization.

The treatment objective in biologic model–based inverse
planning is usually stated as the maximization of the TCP
while maintaining the NTCP to within acceptable levels.22,23

Physical constraints on dose and dose volume are often
introduced to ensure that the results are consistent with
the clinical judgment of the physicians. Brahme and Kallman
and colleagues used the probability of uncomplicated con-
trol, P+, in their formalism.14,24 Practically, the use of dose-
response indices for optimization might also pose some
problems. For instance, dose response–based optimization
may lead to very inhomogeneous target dose distributions.
Furthermore, it is difficult for clinicians to specify the opti-
mization criteria in terms of certain dose-response indices
(eg, TCP, NTCP, and P+). This difficulty becomes even more
significant when two or more independently optimized
plans are to be combined because it is impractical to spec-
ify the desired TCP and NTCP of the component plans.
Because of these problems, the use of biologic model–based
dose optimization has mainly been limited to the research
setting and little effort has been made to implement these
into commercial IMRT planning systems.

Model Parameters 
Any dose optimization framework must deal with trade-
offs between the target and OAR.25 Generally, the objec-
tives of different structures are multifaceted and
incommensurable. A combination of the objectives is usu-

ally done to form a single objective function. In this process,
a set of importance factors is often incorporated into the
objective function to parameterize trade-off strategies and
prioritize the dose conformity in different anatomic struc-
tures. Whereas the general formalism remains the same,
different sets of importance factors characterize plans of
obviously different flavor and thus determine the final plan.
One of the major difficulties is that the influence of these
weighting factors on the final solutions is not known until
the dose optimization is done, necessitating a trial-and-
error determination of the parameters. In most (if not all)
of the currently available planning systems, the values of
the weighting factors are presented to the user as opti-
mization parameters. A good understanding of the role
of these parameters and suitable training on how to empir-
ically determine the parameters are required.

It is possible to use an iterative algorithm to estimate
the weighting factors numerically.25 Plan selection is done
in two steps. First, a set of importance factors is chosen,
and the beam profiles are optimized under the guidance of
a quadratic objective function using an iterative algorithm.
The “optimal” plan is then evaluated by a decision func-
tion, in which the corresponding trade-off parameters
are more easily determinable based on some simple con-
siderations.25 The importance factors in the objective func-
tion are adjusted iteratively toward the direction of
improving the ranking of the plan. For every change in the
importance factors, the beam parameters are reoptimized.
Even though further refinement of the plan may still be
needed in selected cases, the technique provides a good
starting point for planning.

Dose Optimization Algorithms
Although the modeling of RT treatment is of paramount
importance, the optimization of the selected multidi-
mensional objective function provides a vehicle to obtain
the optimal solutions. The task of an optimization algo-
rithm is to find the combination of beam parameters that
optimize the chosen objective function, possibly subject
to some constraints. Numerous algorithms have been devel-
oped for the optimization of a multidimensional function
in the sciences and engineering over the years, and there
is a vast literature on the subject. Generally speaking, the
selection of an optimization technique depends on the
specific form of the objective function and the imposed
constraints. In practice, even for the same class of prob-
lem, more than one algorithm may exist for achieving the
same goal, and the detailed implementation of different
algorithms can be quite different. Many optimization tech-
niques have been used for RT inverse planning. Here we
briefly describe a few approaches to illustrate how a mul-
tiobjective objective function is optimized and the pros
and cons of these common techniques (see Chapter 10
“Treatment Planning”).
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Iterative Algorithms 
The iterative method is perhaps the most widely imple-
mented technique in RT optimization. Starting with an ini-
tial approximate solution, it generates a sequence of solutions
that converge on the optimal one. For large systems, espe-
cially large linear systems, iterative methods prove to be effi-
cient in terms of computer storage and computational time.
The available iterative techniques can generally be grouped
as non–derivative-based and derivative-based methods. The
former incorporates only an objective function value cal-
culation with some systematic method to search the solu-
tion space. This technique is generally intuitive, easy to
implement, and particularly suitable for simple systems and
educational illustration. For a complex system, the con-
vergence behavior may not be as good as more sophisticat-
ed gradient-based search techniques. The computational
cost and poor convergence in this situation may outweigh
the benefit of avoiding derivative calculations.

As an example, Figure 2-9 illustrates the flowchart of an
algebraic iterative inverse planning technique (AIIPT)
described by Xing and colleagues.26,27 A schematic draw-
ing of calculation pixels and bins in the AIIPT calculation
is shown in Figure 2-10. The algorithm was generalized
from the algebraic reconstruction technique (ART) based
on the analogy between rotational RT optimization and
tomographic image reconstruction. In the AIIPT algorithm,
voxels are examined in sequence, and corrections are made
immediately after a pixel is addressed. The successive treat-
ment of the system eventually leads to an optimized solu-
tion. A geometric interpretation of ART has been
published.28

The iterative process is described by the following oper-
ations: (1) assume an initial set of beam profiles; (2) com-
pute the dose at a voxel; (3) compare the calculated and
prescribed doses; (4) obtain correction factors to the beam-
lets that irradiate the voxel; and (5) apply the corrections
to the contributing beamlets and then repeat from step 2
for the next voxel (go back to the first voxel and increase
the iteration index by one after all voxels are addressed).
This process is repeated until the desired accuracy is
achieved. The simultaneous iterative inverse planning and
least squares inverse treatment planning algorithms also
fall into the same category of the nonderivative method.26,27

A similar algorithm with a multiplicative beamlet updat-
ing scheme was described by Jones and Hoban.29

Various gradient-based methods have been successful-
ly applied to RT plan optimization and implemented in
commercial IMRT planning systems. A general class of iter-
ative algorithms can be written as

(4)

where I is the fluence vector, Mold is a matrix, and λ is a
positive parameter. When Mold is a unit matrix, equation
5 is the well-known steepest descent algorithm, whereas
when Mold = Hold, it describes Newton’s method, in which
Hold is the inverse of the Hessian matrix.30 In the steepest
descent algorithm, from a set of fluence functions, Iold, we
search along the direction of the negative gradient, −∇
F(Iold), to a minimum on this line; this minimum is taken
to be Inew.

It is fair to say that the choice of a specific algorithm
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tively. Reproduced with permission.



to solve the inverse planning problem is not unique and
is determined by the problem at hand and, to a certain
extent, by personal preference. Generally, the iterative
approach works well for a nonconvex objective function,
and the solution can be trapped in local minima for sys-
tems with a complicated form of the objective function.
Several commercial systems provide both iterative and
stochastic optimizers so that users have the tool to com-
pare the functionality of different approaches and, more
importantly, to independently check an optimization cal-
culation.

Computer-Simulated Annealing 
The simulated annealing method31 is an extension of the
original Monte Carlo simulation algorithm introduced by
Metropolis and colleagues.32 It attempts to find the opti-
mal solution by mimicking the behavior of a system of
interacting particles that are progressively cooled and
allowed to maintain thermal equilibrium while reaching
the ground state. In physical annealing, the system is heat-
ed, thereby conferring randomness to each component. As
a result, each variable can temporarily assume a value that
is energetically unfavorable, and the system explores con-
figurations that have a higher energy. The fundamental
principle here is that even at moderately high temperatures,
the system slightly favors regions in the configuration space
that are overall lower in energy and hence more likely to
contain the global minimum. The algorithm employs a ran-
dom search that not only accepts changes that decrease
objective function but also some changes that increase it.
The probability for accepting a trial configuration is con-
trolled by the temperature and is given by

(5)

where ∆F is the increase of the objective function and T is
the system temperature. The temperature is gradually low-
ered according to an empirically chosen cooling sched-
ule.33,34 As the temperature is slowly reduced, the
probability of accepting a trial configuration with a high-
er objective function value is reduced. The starting tem-
perature is chosen to be higher than the largest value of
objective function calculated for a random set of vari-
able configurations. In principle, this algorithm is capa-
ble of finding the global minimum of a multidimensional
objective function even when local minima exist. For more
details about the simulated annealing algorithm, readers
are referred elsewhere.34–36

Other Optimization Algorithms 
In addition to the iterative and simulated annealing algo-
rithms, many other types of optimization approaches have
been employed for therapeutic plan optimization. Linear

programming was applied to the dose optimization of
3DCRT plans and cyberknife plans. The utility of filtered
backprojection from CT image reconstruction has also been
explored by several researchers.37–39

The constrained least square algorithm40 was employed
to optimize 3DCRT plans41,42 and IMRT plans. Constrained
optimization of a linear system can be viewed in two ways.
One involves transformation of the problem into a reduced
space. Another approach is to work with the lagrangian
function and to obtain the solution of the system by a direct
matrix manipulation. In this way, a priori knowledge of the
variance of the system variables can be included as a
lagrangian multiplier. Without repeatedly invoking the dose
calculation, this algorithm allows one to obtain the opti-
mal solution of the system with significantly increased com-
putational speed, providing a fast interactive planning
environment for IMRT planning.

Mixed integer programming technique was used to gen-
erate treatment plans for linear accelerator–based radio-
surgery,43 IMRT,44 and 3DCRT.45 Lee and Zaider also
applied integer programming for permanent prostate
implant planning.46 The mixed integer programming mod-
els incorporate strict dose restrictions on the tumor vol-
ume and constraints on the desired number of beams,
isocenters, couch angles, and gantry angles. The goal is to
deliver the full prescription dose uniformly to the tumor
volume while minimizing excess radiation to the sur-
rounding normal tissue. Hou and colleagues used simu-
lated dynamics in a classic system of interacting particles
for IMRT optimization.47 In this approach, an analogy is
established between intensity profile optimization in IMRT
and relaxation to the equilibrium configuration in a dynam-
ic system. Dose-volume constraints are handled by placing
hard constraints on partial volumes. The genetic algorithm
is another widely used approach in sciences and engineer-
ing and has found some preliminary application in RT dose
optimization.48–51

For all of their complexity, the algorithms to optimize
a multidimensional function are routine mathematical pro-
cedures. In general, simulated annealing and genetic algo-
rithms are powerful approaches, but excessive computation
time is a drawback to their clinical application. Treatment
planning based on filtered backprojection and direct Fourier
transformation have difficulty  handling the negative flu-
ence problem and are not generally applicable for an arbi-
trary dose prescription and kernel. Iterative methods are
widely used to optimize a multidimensional objective func-
tion by starting with an initial approximate solution and
generating a sequence of solutions that converge to the
optimal solution of the system.

It is useful to note that much effort has also been devot-
ed to formulate the problem into a more effective mathe-
matical framework. For example, Xing and Lian and their
colleagues introduced a new concept of a preference func-
tion and recast the problem into the framework of Bayesian
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statistical analysis.35,52–54 In this approach, instead of a rigid
prescription dose, a range of prescription doses prioritized
by the preference function is allowed. The rationale here is
that since a rigid prescription is not achievable and the final
solution will deviate from it anyway, we would have much
better chance to obtain what we want if we could inform
the system with some a priori information about our pref-
erences on different possible scenarios (instead of leaving
the decision-making totally to the computer). The tech-
niques developed over the years in statistical decision-mak-
ing can be easily extended to RT plan optimization problem.
The primary advantage of the technique is that it enables
one to effectively incorporate the existing clinical knowl-
edge or other prior knowledge into inverse planning. When
the prescribed dose takes a single rigid value, the above for-
mula becomes identical to the conventional least squares
approach or alike. Maximum likelihood estimation55,56 or
the maximum entropy approach57 also represents a special
case of the formalism. Finally, it is interesting to point out
that various techniques in related fields such as neural net-
works58 and fuzzy logic59 are also being translated for RT
dose optimization.

Practical Aspects of IMRT Planning
Inverse planning is a computer-based decision-making
technique that derives the optimal treatment plan by start-
ing with a set of desired doses or DVHs prescribed to the
target and normal tissues. To use an inverse planning sys-
tem to generate a treatment plan, one must delineate the
tumor volume and sensitive structures, for which dose
avoidances are desired. This differs from conventional plan-
ning, in which the target volume is often defined directly
on the portal films (see Chapter 11 “Plan Evaluation”). If
target contours need to be altered after a conventional treat-
ment plan is obtained or during a course of treatment, it
is usually achieved by modifying the positions of the cor-
responding MLC (or by modifying a block). In inverse treat-
ment planning, however, the beam profiles and beam
apertures are derived by the system, and any change in
the target volume requires reoptimization of the plan.
Moreover, all of the tasks following IMRT planning, such
as patient-specific QA and data entry, need to be repeated.

IMRT planning is still inherently a trial-and-error process
owing to the large number of input parameters.60 The trial-
and-error process here is quite different from that in 3DCRT,
in which intuition and previous experience can be easily used
to guide the planning process. In an anterior-posterior treat-
ment, for example, if the dose in the anterior region is high-
er than that of the posterior region, one can simply increase
the weight of the posterior field. This type of guidance is lost
in inverse planning, and, frequently, the trial-and-error process
has to proceed in a “blind-guessing” fashion because the
influence of most of the system parameters is not known
until the dose optimization is complete. A good under-
standing of the effect of treatment planning parameters used

in optimization on the resultant dose distribution is neces-
sary to carry out the planning and the plan “tweaking”process.
Recently, tools for assisting the interactive planning have
emerged. The dose shaping technique described below is one
example. Hopefully, this type of research will make clinical
inverse planning more straightforward in the future.

Plan review is an important aspect of IMRT. In inverse
planning, an objective function is constructed based on
general physical, dosimetric, and biologic considerations
and is defined as a global quantity.52 The translation of the
treatment objectives to a single objective function is at best
an approximation. Just like any data reduction or com-
pression scheme, there is a loss of information with regard
to the characteristic of the individual data point. Even with
the best possible objective function, the optimal solution
may still not represent the best clinical solution in every
aspect. It is important to review the plan to ensure that the
final solution is consistent with clinical judgment. IMRT
plan evaluation tools vary from one commerical plan-
ning system to another. Typically, they include isodose dis-
tributions in axial, coronal, and sagittal planes; DVHs; and
maximum, minimum, and average target and sensitive
structure doses. A description of plan evaluation methods
is presented in Chapter 12 “Delivery Systems.”

The dose inhomogeneity of an IMRT plan is usually
higher than that in 3DCRT as a consequence of increased
conformity. Any deviation from a conventional uniform
dose scheme should be carefully evaluated to ensure its clin-
ical acceptability. If hot or cold spots are unavoidable, efforts
should be made to ensure that they are not located in unde-
sirable locations. For example, a cold spot in the center of
the target or a hot spot outside the target should be avoid-
ed. Even a hot spot inside the target volume may not be
desirable. For example, for prostate cancer, a hot spot close
to the urethra is usually not acceptable, particularly if the
total dose is escalated. The dose gradient of an IMRT plan
near the boundary of the target or OAR can be very high.
If the structure(s) is susceptible to the setup uncertainty
and/or organ motion, the actual dose received by the tar-
get or OAR may be significantly lower or higher than that
shown in the plan.61,62 In this case, an adequate margin for
the structure is important to ensure that the planned dose
distribution can be achieved in a clinical setting.63

Beam placement in IMRT is worth discussing. Generally
speaking, the beam configuration may have significant influ-
ence on the quality of an IMRT plan even when a large num-
ber of incident beams (eg, nine beams) are used.64–69

Clinically, however, beam orientations are selected on a trial-
and-error basis. To obtain an optimal beam configuration,
in principle, one can simply add the degree of freedom of
beam angles into the objective function and optimize them
together with the beamlet weights.65,70 Although this does
not pose any conceptual challenge, the computational time
becomes excessive because of the greatly enlarged search
space and the coupling between the beam profiles and the
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beam configurations. The beam intensity profiles have to
be optimized for every trial beam configuration because the
influence of a set of gantry angles on the dose distribution
is not known until beam intensity optimization is performed.
A computationally efficient optimization algorithm is nec-
essary to have a clinically practical beam orientation opti-
mization tool. Some progress has been made toward this
goal.71,72 But before commercial companies implement clin-
ically practical tools for automated or semiautomated beam
placement, alternative techniques or even some general
guidelines would be useful to facilitate IMRT planning.

One of the appealing approaches is the class-solution
method.73 The basic idea is to construct a representative
beam configuration based on previous experience for a
given disease site and then use this “class-solution” for sub-
sequent treatment planning. Schreibmann and Xing sys-
tematically investigated the issue and proposed a set of
class-solutions for IMRT prostate treatment.74 To derive
a population-based beam orientation class-solution, a beam
orientation optimization algorithm was used to derive the
optimal solutions for each individual in a group of 15
patients with prostate cancer. Figure 2-11 shows the dis-
tributions of optimal beam angles for five, six, seven, and
eight beams for the 15 patients studied. The colored short
lines represent directions found in individual cases, and
the red bold long lines represent the directions identified
as the class-solutions. These results indicate that the beam
orientations for a certain incident direction are confined
in a certain range and that beam orientation class-solutions
may be a reasonable compromise between what is practi-
cal and what is optimal for prostate IMRT. For other dis-

ease sites, beam orientation class-solutions may not exist
because the geometric variations among the patient pop-
ulation are too large.

On approval of the plan by the physician, an RT plan file
or a DICOM-RT file is generated containing all of the rel-
evant machine parameters for IMRT treatment. The IMRT
plan file can be complex. For example, it may contain hun-
dreds of MLC segments. Consequently, manual delivery is
not an option. Instead, delivery is usually accomplished by
the computer-controlled systems, including the record and
verify system, linear accelerator control, and MLC control
software. The detailed treatment settings contained in the
RT plan or DICOM file are transferred from the planning
system to the record and verify system. Normally, redun-
dant checksums are also in place for each record, ensuring
the safe transfer of data over the computer network.Although
it is perhaps not necessary to list all of the information about
the treatment in the chart, the chart should contain concise
information about the treatment that can be easily verified,
for example, the treatment machine, energy, number of
beams, gantry and couch angles, monitor units (MUs) for
each beam, number of fractions, and fraction doses. The
plan output, such as isodose lines for a selected plan in
different views on CT images, DVHs, and the QA report,
should also be documented. The intensity maps for each
beam should be included if possible.

Advanced Topics in IMRT Treatment
Planning

Inverse planning is at the foundation of IMRT, and its per-
formance critically determines the success of an IMRT treat-
ment. Unfortunately, the currently available inverse planning
formalism is not satisfactory, and the solutions out of so-
called “optimization” systems are often suboptimal.
Considerable effort may be required to compute a clini-
cally acceptable plan, and the final results may strongly
depend on the planner’s experience and understanding of
the planning system. These shortcomings of the existing
systems are familiar to anyone engaged in clinical IMRT
treatment planning. In addition to the prescription doses,
the current planning system requires the user to preselect
the angular variables (gantry, couch, and collimator angles)
and the weighting factors of the involved structures. These
variables and parameters constitute an additional multi-
dimensional space, which is coupled to the beam profiles.

A survey carried out by us indicates that there are five
major problems with current inverse planning systems: (1)
no effective mechanism for incorporating prior experience
into plan optimization; (2) lack of direct control over the
regional dose or, more generally, lack of interactive tools
to guide the planning process; (3) no effective tools for aid-
ing beam placement in IMRT planning; (4) inability to
incorporate organ motion directly; and (5) inefficient inter-
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FIGURE 2-11.  Distributions of beam angles for five, six, seven, and
eight beams, respectively. The short colored lines represent directions
found in individual cases, and the long red (bold) lines represent the
directions identified as class-solutions. Reproduced with permission.
(To view a color version of this image, please refer to the CD-ROM.)



face between planning and delivery systems. Toward estab-
lishment of a clinically efficient and robust inverse plan-
ning system, many investigators have attacked the problems
mentioned above, some of which are the subject of the fol-
lowing sections.

Statistical Analysis–Based Formalism for
Therapeutic Plan Optimization

An important element that is missing in the current inverse
planning formalism is a mechanism for incorporating prior
knowledge into the dose optimization process. In image
analysis and many other fields, it has proven valuable to
include partial knowledge of the system variables into the
optimization process35,54,75 because it provides guidance
in the search for the truly optimal solution. Statistical analy-
sis formalism, which appears in virtually all branches of
the sciences and engineering, affords a natural basis for this
type of application and provides a powerful vehicle to
achieve the goal of treatment plan optimization. Using this
approach, Lian and colleagues demonstrated the feasibili-
ty of incorporating a range of prioritized dose prescrip-
tions into the planning process.52,76 The approach is based
on a newly introduced concept of a preference function,
whose role is to relax our requirement of a rigid dose pre-
scription, to allow a range of doses to be considered, and
to quantify the willingness to accept a dose in that range.
In addition, to make the system less ill-defined, this new
scheme can be used to formalize our clinical knowledge
(such as outcome data19,77) and incorporate them into dose
optimization. In Figure 2-12, we show the preference func-
tion derived using published data from Eisbruch and col-
leagues78 for parotid glands (four different irradiation
volumes). Coupled with the statistical inference tech-
niques,53,54 this should make the inverse planning process
more computationally intelligent.

Another application of the formalism is to include model
parameter uncertainties into dose optimization. For exam-
ple, the radiobiologic formalism involves the use of model
parameters that are of considerable uncertainty. Biologic
“margins” have been used to account for the variability in
radiation sensitivity. This method assumes the patient to
be more sensitive than the mean value for normal tissues
and more resistant than the tumor. EUD-based optimiza-
tion with the incorporation of model parameters has been
demonstrated through the use of a statistical inference tech-
nique.79 Because currently available models for comput-
ing the biologic effects of radiation are simplistic and the
clinical data used to derive the models are sparse and of
questionable quality, the technique is valuable to minimize
the influence of statistical uncertainties.

Multiobjective Optimization
Radiation dose optimization is intrinsically a multiobjec-
tive problem because of the existence of multiple con-
flicting objectives in the system. In the conventional

approach, the multiple objectives are combined to form an
overall objective function through the use of so-called
importance factors.25,80 Contrary to this, the dose deliv-
ered to each structure constitutes one of the objectives in
multiobjective optimization, which is an alternative way to
deal with the trade-offs of multiple conflicting objectives.
The method attempts to obtain all efficient solutions and
provide the planner with a more thorough picture of the
possible options or the trade-offs between the different
objectives. Here an efficient solution (often called the Pareto
solution in multiobjective optimization theory) is defined
as a plan with a good compromise of all of the objectives
involved in the problem or, more precisely, a plan that can-
not be further improved without significantly deteriorat-
ing the dose distribution in one or more organs.
Mathematically, the multiobjective optimization (or vec-
tor optimization)81–84 is to determine a set of decision vari-
ables that optimizes a vector function whose elements
represent M objective functions without violating the sys-
tem’s constraints. The collection of all efficient solutions is
named the Pareto front. Although the approach is con-
ceptually appealing, practical issues, such as the enormous
computing time required to obtain the Pareto solution and
how to effectively select a plan from the Pareto front, must
be resolved before it finds widespread application in RT
plan optimization. Perhaps a hybrid of single- and multi-
objective techniques is a viable option.

Integration of IMRT Planning and Delivery
IMRT planning is generally performed in two steps: calcu-
lation of the intensity maps of the incident beams and decom-
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FIGURE 2-12.  Preference function of parotid salivary glands for four
fixed partial volumes (Veff). In constructing the assumed dose-volume
preference function, the preference level is assumed to be 1 for normal
tissue complication probability (NTCP) < 5% and 0 for NTCP > 50%. The
reference volume (Vref) refers to the volume of the gland. Adapted from
Eisbruch A et al.78 (To view a color version of this image, please refer
to the CD-ROM.)



position of each intensity map into a series of MLC-shaped
segments using a leaf sequencing algorithm. In practice, the
decoupling of dose optimization and leaf sequencing has a
number of consequences. In addition to the need for the
development of complicated MLC leaf sequencing software,
the number of segments resulting from the approach is often
unnecessarily large. The leaf sequencing algorithm some-
times has to go through additional steps to accommodate
some special hardware constraints of the MLC delivery sys-
tem that can be easily dealt with at the stage of dose opti-
mization. To improve the efficiency of the interface between
the inverse planning and the dynamic MLC delivery systems,
attempts have been made to incorporate machine constraints
and other physical aspects of the delivery system into dose
optimization. The most effective method is perhaps the aper-
ture- or segment-based optimization, which optimizes direct-
ly the objective function with respect to the shapes and
weights of the segmented fields.44,51,85,86 In this approach,
the number of segments for each incident beam is prespec-
ified instead of left “floating.” Generally speaking, it is more
computationally involved to optimize an objective function
with respect to the segment shapes and weights because of
the nonlinear dependence of the dose on the leaf coordi-
nates. However, the benefits gained by eliminating the extra
leaf sequencing step and the associated drawbacks outweigh
the slight computational cost.

Interactive Planning Tools for IMRT 
The interactive process of IMRT planning is less intuitive
than that of forward planning because of the involvement
of a large number of parameters whose roles in the final
solution are not explicitly known until the completion of
a dose optimization calculation. There is a need for the
planner to adaptively modify or fine-tune a solution toward
the desired direction. For example, frequently after opti-
mization, the dose in only a few small regions is not satis-
factory. Currently, plan modification is achieved by adjusting
structure-dependent system parameters (eg, prescription,
importance factors), which influence not only the dose in
the region of interest but also in other areas. To modify the
dose in a specific region, in principle, one can use ray-tracing
to find the beamlets intercepting the area and adjust their
intensities accordingly. The problem is that there are numer-
ous ways to modify this intensity and the optimal arrange-
ment of the beamlet intensities is not obvious. Cortrutz
and Xing pointed out that local dosimetric behavior can
be more effectively controlled by introducing a region-
dependent penalty scheme and demonstrated the utility of
this approach using a model system and clinical exam-
ples.87,88 After the conventional planning is done, they iden-
tify the subvolumes on isodose layouts or the dose interval
on the DVH curve in which the fractional volume needs
to be changed. The local penalty (eg, local importance fac-
tor or local prescription) is then adjusted, and the dose is

reoptimized. The fine-tuning of doses is manually iterative
in nature, and the process can be easily accomplished using
a graphic user interface. Using this technique, it has been
shown that one can eliminate hot and cold spots. Generally,
in dose optimization, there is no net gain. That is, the
improvement in the dose to a region is often accompanied
by a dosimetrically adverse effect(s) at another point(s)
in the same or different structures. Practically, however,
some dose distributions are more acceptable than others.
The important issue here is to find the solution that
improves the dose(s) at the region of interest with a clini-
cally insignificant or acceptable sacrifice.

It is useful to mention that some “hot spot editor” tools
have recently been implemented in commercial systems.
These editors rely primarily on a rudimentary ray-tracing
and is done as follows: (1) visually locating the hot/cold spot;
(2) finding the corresponding beamlets that contribute to
the dose at the point of interest (POI); (3) decreasing/increas-
ing the intensities of one or more of the beamlets; and (4)
updating the dose distribution. In reality, there are multi-
ple beamlets contributing to the dose at the POI and the
problem is determining the optimal way to modify them
so that the doses at other points are compromised minimally.
In the current commercial systems the hot/cold spot is
improved by decreasing/increasing the beamlets with a pre-
designed updating method, which is rarely optimal and often
causes new cold/hot spots somewhere else within the patient.
The approach described by Cortrutz and Xing  allows opti-
mal adjustment of the beamlet intensities, thus avoiding the
aforementioned problem. Since the re-optimization is done
on top of the existing solution, it requires only very limited
additional computing time. Furthermore, it is done in the
background (just like the recalculation of dose in step (4)
is done in the background) and the user does not need to
take any additional action.

Automated and Semiautomated Beam Placement
Clinically, gantry angles are selected empirically, and there
is no guarantee that the beam configuration is optimal for
a given patient. Many investigations are exploring the role
of beam configuration selection in IMRT39,65,69,89–91 and
developing tools for beam placement. A promising tech-
nique uses beam’s eye view dosimetrics (BEVD).71,92 The
central idea of this single-beam scoring technique is that
the merit of a beam direction should be measured by what
that beam could achieve dosimetrically without exceeding
the dosimetric or dose-volume constraints of the system.
For computational purposes, a beam portal is divided into
a grid of beamlets. Each beamlet crossing the target is
assigned the maximum intensity that could be used with-
out exceeding the dose tolerances of the sensitive structures
and normal tissue. A forward dose calculation using the
“maximum” beam intensity profile is then performed, and
the score of the given beam direction (indexed by i) is cal-
culated according to92
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(6)

where dni is the maximum dose delivered to voxel  by  the
beam from the direction indexed by i, NT is the number of
voxels in the target, and DP

T is the target prescription. The
BEVD score function captures the main feature of a plan-
ner’s judgment about the quality of a radiation beam and
allows one to select beam orientations without excessive com-
putational time. For a given patient, the score function for
every possible beam direction is evaluated and the directions
with the highest BEVD scores are identified. Although the
technique does not yield the final beam configuration in a
multifield IMRT treatment, it provides useful information
with regard to which beam directions are potentially good
or bad. During planning, the beams with the highest scores
are considered favorable for the treatment. It is also illus-
trative to point out that the BEVD information can also be
integrated into beam orientation optimization program to
improve the convergence behavior and computational
speed.72

Hybrid Treatment of IMRT with Other Modalities
IMRT affords one the ability to produce not only spatial-
ly uniform but also purposely nonuniform doses. A nat-
ural application of the feature is to combine IMRT with
other RT modalities to generate a dose distribution that
would otherwise be impossible. Along this line, IMRT has
been considered a method of salvaging suboptimal prostate
implants.93 The combination of IMRT with conventional
electron beam(s) for improving the photon-electron field
matching and for treatments of certain specially shaped
targets has also been investigated.94 Figure 2-13 illustrates
a combined head and neck boost treatment using electron
and intensity-modulated photon beams. In head and neck
cancer, treatment initially involves the irradiation of the
primary tumor and the cervical lymph nodes. After the tol-
erance dose of the spinal cord is reached using opposed lat-
eral photon beams, the lateral fields are reduced off the
spinal cord. The treatment of the anterior neck along with
the primary tumor is continued using the reduced photon
beams, whereas the posterior neck overlying the spinal cord
is treated with lateral electron fields. This requires the match-
ing of an electron field with two opposed photon fields.
For comparison, the combined treatment using the con-
ventional technique (electron + conventional photon
beams) is shown in Figure 2-13. When the electron and
unmodulated photon beams are matched directly, hot spots
greater than 15% above the prescribed dose are seen in the
abutting region. This is reduced to 5% when the proposed
technique was used, with markedly better dose homogeneity
in the abutting region. Furthermore, because of the broad-
ened photon penumbra, the dose homogeneity in the junc-

tion region becomes less sensitive to patient setup errors.94

Gated or Synchronized IMRT 
IMRT can produce highly conformal doses to targets and a
sharp dose gradient between targets and surrounding crit-
ical structures.60,95–98 Together with improved patient immo-
bilization, the target margins can be reduced to facilitate
dose escalation. However, margin reduction remains chal-
lenging for treatments in the thoracic regions and other sites
in which intrafraction respiratory motion is significant.99,100

The delivery of IMRT in either dynamic or static mode can
cause unexpected high- and low-dose regions owing to the
interplay between the movements of the tumor and the MLC
leaves.101 This issue can, in principle, be improved through
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FIGURE 2-13.  Comparison of the isodose distributions of the treatment
plans in a transverse section of a patient with head and neck cancer
when the electron and photon beams were matched directly (A) and
when dynamic intensity modulation was used for the photon beams (B).
Isodose levels are shown at 30%, 50%, 70%, 90%, 95%, 100%, 105%,
110%, and 115%. Note that the 110% and 115% isodose lines are not
present in (B). Reproduced with permission. (To view a color version of
this image, please refer to the CD-ROM.)



the use of gating or respiration synchronization.102–106 (See
Chapter 9 “Respiratory Motion Management” and Chapter
19.4 “Intrafractional Organ Motion and Planning: Emerging
Technology”.)

In gating, tracking, and breath-hold, the treatment
machine is switched “on” or “off” in response to a signal
that is representative of a patient’s breathing motion. Both
passive and active devices can be used to monitor the res-
piratory motion. Ideally, the beam is on only during por-
tions of the breathing cycle when motion is small. The
disadvantage of this technique is the prolonged treatment
time compared with that of nongating approaches.

Motion-synchronized RT is based on two assumptions: (1)
tumor motion is considered to be predictable, and the model
of motion can be established prior to the treatment and is
assumed to be the same (or at least adaptively predictable)
throughout the treatment course, and (2) the treatment deliv-
ery system, either the MLC leaves or the treatment couch, can
be instructed to precisely move to certain locations to adapt
to the motion of the tumor.The main advantage of the motion-
synchronized RT is that the radiation beam is on all of the
time; therefore, there is no treatment time prolongation.
However, several major technical difficulties must be over-
come. Inverse treatment planning in this case must take into
account the functionality of the delivery system.

Another issue is that respiratory motion exists in all
stages of the RT process, including preplanning imaging
and treatment planning and delivery. If respiratory motion
is not accounted for during image acquisition, artifacts may
arise during the image acquisition, leading to the distor-
tion of the target volume. For gated treatment, the same
window should be used for imaging and planning and deliv-
ery so that tumor positions and patient anatomy can be
reproduced accurately. For motion-synchronized RT, sev-
eral sets of CT images representing different phases of the
breathing cycle need to be acquired through either a high-
speed multislice CT scanner or by postprocessing software
to sort the images. All of these images will be used for IMRT
treatment planning, and the resulting MLC leaf sequences
need to be multiplexed for delivery.

Biologically Conformal IMRT 
Although the biology of tumors plays a crucial role in the
success of RT, commonly used CT and magnetic resonance
images provide few metabolic data and have significant short-
comings in characterizing benign and malignant tumors.
Recent advancements in functional imaging make it possi-
ble to noninvasively obtain a patient’s metabolic distribu-
tion. Coupled with the technical capability of IMRT in
generating customized three-dimensional dose distributions
with subcentimeter resolution, this may afford a significant
opportunity to improve conventional RT by producing doses
in accordance with biologic requirements.107–110 Research
effort is focused on integrating functional data into IMRT
treatment planning to improve clinical cancer management.

In general, functional imaging suggests nonuniform dose
distributions to meet the heterogeneous biologic require-
ments. Xing and colleagues identified some relevant issues
and developed a preliminary four-dimensional inverse plan-
ning scheme for functional imaging-guided IMRT.109 The
metabolic and functional data are incorporated effectively
by modulating the prescription doses in the target voxels.
This algorithm enables one to produce a high dose where
there is resistance and/or where tumor burden is large and
to differentially spare the sensitive structures with more
emphasis on functionally important regions.

Delivery Techniques for Fixed-Gantry
IMRT

IMRT delivery with MLC is based on the simple principle
that moving jaws or leaves can be employed to control
the dose delivered to a point. As mentioned previously,
IMRT planning is currently performed in two steps: opti-
mization of intensity maps and MLC leaf sequencing. The
latter is to convert an intensity map into an MLC leaf
sequence file, which specifies the leaf positions as a func-
tion of the fraction of MUs delivered. For the delivery, the
two-dimensional beam fluence is divided into strips cor-
responding to the projection of each leaf pair of the MLC.
Each MLC leaf pair is then required to modulate the flu-
ence along its projection (see Chapter 12 “Delivery
Systems”). For Varian linear accelerators (Varian Medical
Systems, Palo Alto, CA), the leaf pairs are independent,
reducing the conversion of two-dimensional fluence pro-
files into a collection of one-dimensional problems. As a
result, the problem becomes finding a series of leaf posi-
tions (coordinates of leading and trailing leaves) to cover
the area under a one-dimensional fluence function. There
is no unique solution to this problem, leading to a num-
ber of ways to accomplish beam modulation.

MLC-based delivery is generally divided into static step-
and-shoot111–116 and dynamic modes.117–119 A step-and-
shoot leaf sequence file consists of alternatives of dose-only
and motion-only instances. The step size of MLC move-
ment in this mode is determined by the dimension of the
beamlet in the leaf movement direction. Dynamic delivery
differs from the step-and-shoot mode in that leaf move-
ment and dose delivery are realized simultaneously. These
algorithms are described below.

Step-and-Shoot Delivery
In step-and-shoot delivery, the total dose at a spatial point
is the superposition of contributions from a series of segment
fields (typically, the number of segments is between 20 and
100). The x-ray beam is off when the MLCs travel from one
segment to another. This is perhaps the most intuitive tech-
nique to deliver intensity-modulated fields using MLC. The
QA procedure for this delivery mode is relatively simpler (than
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dynamic delivery) because there is no correlation between
the leaf speed and the dose. Instead of describing the algo-
rithm generally, an example is used to illustrate how the step-
and-shoot leaf sequencing methods work.111

Figure 2-14 depicts a simple example of an intensity pat-
tern. The intensity in a 6 × 4 cm field is expressed using five
discrete intensity levels. Four 1 cm–wide leaves (numbered
12, 13, 14, and 15) are to be used to generate the intensity
pattern. The profiles that each leaf pair must generate are
shown in the individual graphs (the profile required by leaf
pair 12 in this example).

For a modulated field to be delivered at a gantry angle,
each component profile along the center of the jth leaf pair
must be rendered into a leaf trajectory. Intensity modula-
tion along the profile, as shown in Figure 2-15, is obtained
by sweeping the leading leaf, 12B, and the following leaf,
12A, from left to right along the x-axis. The first step in this
procedure is to divide the total relative beam intensity into
a number of equal intervals of width ∆Φ, as indicated in
the illustration. The number of intervals selected to span
the range of the intensity is NI. The second step in the pro-
cedure is to find the intersection of the centers of these pro-
file increment bins with the profile. These points are
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FIGURE 2-14.  Intensity map used for illustrating the step-and-shoot
leaf sequencing algorithm. (To view a color version of this image, please
refer to the CD-ROM.)

FIGURE 2-15.  Intensity profile to be produced by leaf pair 12. Reproduced with permission.



indicated by circles in Figure 2-15. The algorithm requires
that an even number of such points be found. The third
step is to divide the coordinate points into two groups. One
group consists of those points lying on an ascending slope
of the profile in which there is a positive gradient (open
circles in Figure 2-15), and the other group consists of those
points lying on a descending slope of the profile in which
there is a negative gradient (filled circles). The fourth step
is to rank the points in each group. The numbers indicat-
ed are the i-index for the sequence for the twelfth pair of
leaves. Pairing together the coordinates of equal rank order
and assigning the coordinates to each pair of leaves pro-
duces the desired leaf sequence for the kth gantry angle posi-
tion, {xAi,j,k, xBi,j,k}, where the index i ranges from 1 to NIj.
The number of steps required to create the trajectories will
not be the same for all profiles that make up a field. Steps
must be added to the shorter sequences with the leaves
abutting beneath a jaw at one end of the profile so that all
sequences for a field will have the same number of steps.

Another type of step-and-shoot delivery is based on the
sequential reduction of intensities according to a prespeci-
fied scheme.112,113,120 The pattern of integers in Figure 2-16
represents an intensity pattern to be delivered using this leaf

setting sequence. The 5 × 5 cm field is to be delivered with a
maximum beamlet intensity of 10 and a minimum beamlet
intensity within the field of 1. The underlying principle of
the algorithm for determining the sequence is that the most
efficient way to subdivide a sequence is by halves.The sequence
is to be delivered by increments that are powers of 2. In this
case, the increments are 8, 4, 2, and 1. The first step is to set
the leaves in a pattern that can deliver an exposure of 8. There
are four beamlets with intensities of 8 or more. They are
not contiguous, but leaves can be set to form two windows
around the two regions that each deliver an intensity of 8.
This is step 1 in Figure 2-17. After this exposure, all but one
of the beamlet positions still require an exposure of 1 or more.
A leaf pattern can then be found that exposes beamlets that
require a residual exposure of 4 or more. However, two such
regions exist that require two separate sets of leaf settings.
These are steps 2 and 3 in Figure 2-17. The residual intensi-
ty then contains values up to 3, which can be reduced by expo-
sures of 2.Again, to expose all of the beamlets, two leaf patterns
are required, each delivering exposures of 2. These are steps
4 and 5 in Figure 2-17. Then all of the beamlet positions have
either received their full exposure are have a residual value of
1. Two more leaf patterns are required to reach all of the 1
positions and reduce the residual intensity to zero. In all, seven
steps are required to deliver the intensity pattern. The single-
profile step-and-shoot leaf setting algorithm requires 13 steps
to deliver this pattern.

Dynamic Delivery
Let Φ (x) be the fluence along the trajectory of the leaf
pair. An example profile is shown in Figure 2-18. To deliv-
er the fluence, one must determine the arrival times at x,
tA(x) for leaf A and tB(x) for leaf B. The units of the arrival
times can be seconds, or they can be expressed as MUs.
The irradiation time interval at x between the opening of
the ray by leaf B and the shielding of the ray by leaf A is
indicated by

38 / Intensity-Modulated Radiation Therapy

5 2 4 7

4 3 10 5

4 2 9 8

3 5 7 3

4 9

7

1

5

2

7 2 4

FIGURE 2-16.  Example intensity map used for illustrating the “areal”
leaf sequencing algorithm.

Leaf Setting Sequence
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FIGURE 2-17.  Leaf sequencing steps involved
in decomposing the intensity map shown from
Figure 2-16. The “areal” algorithm described
by Xia and Verhey112 is used here. Reproduced
with permission.



τ(x) = tA(x) − tB(x) = Φ(x)/Φ0. (7)

Figure 2-19 can then be considered to be a time-position
graph for the two leaves. The upper border of the shaded
area is the leaf A trajectory, and the lower border, or x-axis,
is the leaf B trajectory. The problem with this interpreta-
tion is that it requires leaf B to travel with infinite veloci-
ty and leaf A to travel backward in time! The dilemma
can be resolved by applying a sequence of operations that
transform the two trajectories such that they become deliv-
erable. Note that there are four regions marked along the
fluence profile in which the gradient is either positive or
negative. To remove the time reversal from the continuous
fluence profile, a reflection operator is introduced and is
defined by

τ´ = ∆ τR1 ±[τ(x) − ∆ τR1] (8)

τ´ = ∆ τR2 ±[τ(x) − ∆ τR2] (9)

where ∆ τR1 is the average value of the portion of the pro-
file with a negative gradient within the R1 region around
the first maxima and ∆ τR2 is the average value of the por-
tion of the profile with a negative gradient within the R2
gradient region around the second maxima. The positive
sign is applied when there is a positive gradient and the neg-
ative sign when there is a negative gradient. The reflection
operator is applied to the curves in the negative gradient
regions to yield curves that do not require the leaves to trav-
el backward in time. The results are shown in Figure 2-22.

The operations have introduced a discontinuity in the
leaf sequence curves that can be removed by applying a
translation operator defined in region R1 by

τ ´´(x) = τ´(x) + ∆ τ (10)

where the increments are selected to remove the disconti-
nuity between region R1 and R2, as illustrated in Figure 2-
20. For the sake of generality, in region R1, the translation
constant is zero. However, now there are still horizontal
portions of the curves that represent infinite velocity of the
leaves. There is always a horizontal segment occurring in
either leaf A or leaf B trajectories across the entire sequence.

To remove the infinite velocity, some additional slope is
introduced to each leaf trajectory. This can be achieved
by applying a shear operator to the entire lengths of both
leaf trajectories. The shear operator is defined by

τ´´´(x) = τ´´(x) + x/υmax (11)

This operator tilts the upper and lower horizontal bounds of
each segment of the sequence by an amount determined by
the maximum leaf velocity, resulting in a sequence that can
be practically delivered. The slope of the shear is the inverse
of the maximum velocity that the leaves can move, υmax.
The resulting leaf setting sequence is shown in Figure 2-20.
The leaves begin the sequence closed at the left side of the field
and end the sequence closed together at the right side of the
field. In a region in which the original fluence gradient is pos-
itive, the leading leaf, leaf B,moves with a constant speed deter-
mined by the maximum velocity, and the trailing leaf A moves
along the trajectory given in equation 11. In those regions in
which the fluence gradient is negative, the trailing leaf, leaf
A, moves with the maximum velocity, whereas the leading leaf
moves along the trajectory given in equation 11.

The algorithm used to calculate the velocity modula-
tion of the slower leaf can be derived by differentiating
equation 12 with respect to distance:

dτ´´´ /dx ≡ 1/υ (x) = dτ´´/dx + 1/υmax (12)

The derivative of τ´´ with respect to x can be obtained from
equation 10 and is simply the derivative of τ´ in all subdi-
visions of the trajectory. The derivative of τ´ can be obtained
from equations 8 and 9 and depends on the sign of the flu-
ence gradient:

∇Φ < 0 ⇒ dτ´/dx = −dτ/dx (13a)

∇Φ > 0 ⇒ dτ´/dx = +dτ/dx (13b)

The derivative of τ can be seen in equation 7 to be 

dτ/dx = (dΦ/dx)/Φ0 (14)

assuming that the variation in the incident fluence is neg-
ligible with respect to x. Using these results in equation 12,
the velocity modulation equation becomes
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FIGURE 2-18.  Example intensity map used for illustrating the dynam-
ic leaf sequencing algorithm. Reproduced with permission.
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1/υ(x) = ± (dΦ/dx)/Φ0 + 1/υmax (15)

where the positive sign applies to positive fluence gradient
regions and the negative sign applies to negative fluence
gradient regions. By rearranging, one arrives at

υ(x) = υmax /[1± υmax ⋅(dΦ/dx)/Φ0] (16)

This equation can be used to generate the velocity modu-
lation required to deliver the fluence profile, starting with
the leaves closed together at one side of the profile and end-
ing with the leaves closed together again at the other. The
leaf setting sequence computed by the velocity equation
for the original fluence in Figure 2-18 is shown in Figure
2-20. The results are exact.

Our experience with both step-and-shoot and dynam-
ic delivery indicates that there is no clear-cut advantage for
any one of the methods except in some special situations.
The main disadvantage of the step-and-shoot method is
a sacrifice of accuracy in the delivery of beam profiles that
have steep gradients. The dynamic method delivers the
required distribution by sweeping the leaf pair across the
beam and becomes inefficient in producing “large and flat”
fluence segments.121 It is possible to implement an algo-
rithm combining the step-and-shoot and the dynamic deliv-
eries to use the advantages of each.122 This scheme would
determine the slope of each segment of the intensity pro-
file and then choose the suitable delivery method.

Related Issues in MLC-Based Delivery 

Unlike conventional RT with static MLC fields, significant
dosimetric issues must be addressed when IMRT delivery
is used. Most of the algorithms in the literature, however,
assume an ideal MLC and ignore the influence of many
physical effects and the mechanical constraints of a real-
istic MLC, such as transmission and head scatter, tongue-
and-groove effects, and collision constraints for adjoining
leaf pairs.

Yang and Xing proposed an algorithm to account for
the leaf transmission and head scatter effects in step-and-
shoot leaf sequencing.123 In their approach, an error func-
tion, defined as the least square difference between the
desired and the delivered fluence maps, is introduced.
Mathematically, this function is expressed as

(17)

where ϕ(i,j) and ϕd(i,j) are the calculated and the desired
fluences of beamlet (i,j), respectively. In equation 18, only
those beamlets with nonzero fluences in the desired inten-
sity map are considered because one cannot physically pro-
duce a beamlet with zero fluence.

The calculation starts with the MLC leaf sequence file
derived from the desired fluence map without considering
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transmission and head scatter. The effects of transmis-
sion and head scatter are minimized by iteratively adjust-
ing the fractional MUs in the initial MLC leaf sequences
using a downhill simplex optimization method. A three-
source model124 is used to evaluate the relative head scat-
ter contribution for each segment. The three effective sources
are the source for the primary photons from the target and
two extrafocal photon sources for the scattered photons
from the primary collimator and the flattening filter, respec-
tively. The algorithm has been assessed by comparing the
dose distributions delivered by the corrected leaf sequence
files and the theoretical predication, calculated by Monte
Carlo simulation using the desired fluence maps and sev-
eral clinical IMRT cases. The deviations between the desired
fluence maps and the ones calculated using the corrected
leaf sequence files are less than 0.3% of the maximum MU
for the test field and less than 1.0% for the clinical IMRT
cases. The experimental data demonstrate that both absolute
and relative dose distributions delivered by the corrected
leaf sequences agree with the desired ones within 2.5% of
the maximum dose or 2 mm in high–dose gradient regions.
It is found that the influence of the two effects is more pro-
nounced in the absolute dose than in the relative dose.
Figure 2-21 illustrates a measured absolute dose profile for
a test field. In performing the measurements, MLC leaf
sequences with different correction schemes described in
the figure caption were used.

The influences of rounded leaf ends and interleaf trans-
mission,125 tongue-and-groove effect,126 and the effect of
back-scattered photons from the moving jaws and MLC
leaves on the monitor chamber signal127 have been studied
using accurate models with realistic MLC geometries. It has
been pointed out that the tongue-and-groove effect may be
significant when underdosage occurs between two adjacent
leaf pairs owing to the fact that the region between is always
covered by the tongue, the groove, or both.128,129 Algorithms

have been developed to either minimize or remove this effect
when MLC leaf sequences are generated.114,130–133 Many
researchers have shown that the tongue-and-groove effect
can result in an underdose of as much as 10 to 15% in some
special situations.128,129,134,135 However, a Monte Carlo study
by Deng and colleagues suggested that the difference between
the dose distributions with and without the tongue-and-
groove effect was hardly visible for an IMRT treatment with
multiple gantry angles in a clinical setting.126 More thor-
ough investigations on the tongue-and-groove effect and
other physical factors are needed to understand the sys-
tem and to determine better solutions.

Finally, the inclusion of various physical factors is made
simple if segment-based inverse planning is used. This rep-
resents one of the major advantages of the new type of
inverse planning approach with integration of machine
constraints.

Quality Assurance 
IMRT adds a new degree of freedom to conventional RT
and allows one to tune the dose distribution on an indi-
vidual beamlet level. At the same time, it significantly
increases the level of sophistication and complexity of the
planning and delivery systems. With more and more insti-
tutions starting IMRT programs, it becomes increasingly
important to have robust and efficient QA tools for clini-
cal use. Otherwise, the gain from IMRT may be lost in a
nonoptimal QA procedure and/or be offset by the increased
cost of treatment. In general, IMRT QA has three aspects:
commissioning and testing of the inverse treatment plan-
ning and IMRT delivery system, routine QA of the MLC
delivery system, and patient-specific validation of each
treatment plan. The first task is mainly concerned with the
integrity of the IMRT system. The second involves the nor-
mal operation of the dynamic delivery system, and the third
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FIGURE 2-21.  (A), A schematic diagram of the test field. The field includes five consecutive 2.0 × 10 cm2 segments and attempts to produce a 10
× 10 cm2 open beam. (B) The measured absolute dose profiles along the midline of leaf pair 21A–21B in the isocenter plane at a depth of 5 cm in
solid water for the test field are shown on the left. The measured results of the single-segment 10 × 10 cm2 open field with 30 monitor units are
shown in the central black curve as a benchmark. The red curve is obtained with correction of head scatter and transmission. The top black and bot-
tom blue curves represent the calculated dose profiles with only head scatter or transmission considered.123 Reproduced with permission. (To view
a color version of this image, please refer to the CD-ROM.)   
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task ensures accurate and safe treatment of the patient.
Recently, there have been many excellent reports on IMRT
QA–related issues.60,136–139 Some practical aspects of IMRT
QA are also discussed in Chapter 13 “Commissioning and
Dosimetric Quality Assurance” and Chapter 14 “Quality
Assurance Processes and Future Directions”. In this sec-
tion, the QA procedure and some recent advancements are
summarized.

Commissioning and Testing 
To ensure that the system can be used safely and accu-
rately, the inverse treatment planning system must be
commissioned prior to clinical use. Commissioning and
testing consist of four separate but related steps. The first
is concerned with the system’s ability to accurately com-
pute series of broad beam data. This type of testing is rudi-
mental but useful to identify potential problems quickly.
The second study tests the dose model and the delivery
system with several specially designed intensity patterns.
The accuracy of dose calculation for intensity-modulat-
ed beams can thus be assessed. The third type of study
examines the system’s functionality and dosimetric cor-
rectness for a number of hypothetical phantom cases. In
addition to dose calculation, the functionality of dose
optimization is evaluated at this level of tests. Figure 2-
22 shows two examples of this type of measurement using
a cylindrical water phantom and ion chamber.140 The last
type of study is to test the system using clinical cases to
ensure the dosimetric accuracy and integrity of the sys-
tem. This study evaluates the combination results of image
acquisition and segmentation, geometric and dosimetric
calibration of the planning system, planning and dose cal-
culation, and data transfer. The dose distributions for sin-
gle or multiple fields are usually done using an ion
chamber and films in a phantom. Other dosimeters, such

as thermoluminescent dosimeters and semiconductor
detectors, can also be employed. The American Association
of Physicists in Medicine (AAPM) Task Group 40 and
Task Group 53 reports provide guidelines on this topic
and remain the benchmark documents on the sub-
ject.141,142 This subject has also been discussed extensively
in recent publications.136,137,143

Routine Machine QA
Intensity modulation is achieved with computer-controlled
MLC using either static112,144–146 or dynamic delivery tech-
niques. To ensure that the planned dose distributions are
safely and accurately delivered, an important requisition is
the normal operation of the delivery system, which is war-
ranted by routine machine QA. The principles and practice
of QA for RT can be found in the classic documents of Van
Dyk and Purdy,147 as well as the report of AAPM Task Group
40.141 For IMRT, several things specific to the IMRT MLC
control system need to be checked periodically. Currently,
the routine accuracy check of MLC leaf positioning in most
clinics is performed using radiographic films with special-
ly designed MLC leaf sequences.148,149 Besides being time
consuming, the results of film measurements are difficult
to quantify and interpret. A few research groups have
attempted to use an electronic portal imaging device (EPID)
for quantitative verification of MLC leaf positions with edge
detection algorithms.150–153 The detection precision is
limited to ~ 1 mm owing to the finite pixel size and the
signal-to-noise ratio of the EPID, which is clearly insuffi-
cient for routine QA of the MLC delivery system. Here we
describe a quantitative technique154 for MLC leaf positioning
QA developed recently at Stanford University. Given its sim-
plicity, efficiency, and accuracy, we believe that the tech-
nique is ideally suitable for routine MLC QA and should
have widespread clinical application in the future.
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FIGURE 2-22.  Hypothetical intensity-modulated radiation therapy plans generated for a cylindric water phantom and the measured dose distribu-
tions. The phantom is positioned with its axis perpendicular to the couch top and is supported by a bearing, allowing for rotation about its axis. This
allows for measuring the dose of a multifield plan without gantry rotation. The measurements were made using the Varian dynamic multileaf colli-
mator modulating 4 MV x-ray beams. The plans were generated using the CORVUS system.  Reproduced with permissionfrom Xing et al. 140 (To view
a color version of this image, please refer to the CD-ROM.)



The Stanford MLC QA technique uses the fact that when
a finite-sized detector is placed under a leaf, the relative
output of the detector will depend on the relative fractional
volume irradiated. A small error in leaf positioning would
change the fractional volume irradiated and lead to a devi-
ation of the relative output from the normal reading. For
a given MLC and detector system, the relationship between
the relative output and the leaf displacement can be easily
established through experimental measurements and used
subsequently as a quantitative means for detecting possi-
ble leaf positional errors. Figure 2-23 illustrates a set of cal-
ibration curves for different leaves obtained using an ion
chamber and a Varian CL 2300C/D accelerator with an 80-
leaf MLC.154 Our results indicate that the method could
accurately detect a leaf positional change of ~ 0.1 mm. The
principle of the method is independent of the type of MLC
and detector. The method overcomes the previously stat-
ed shortcomings of both film measurement and edge detec-
tion techniques and provides a reliable means for
quantitative examination of MLC positional accuracy.

The principle has also been applied to MLC leaf posi-
tioning QA using an EPID,155 which has the advantage of
simultaneously detecting positional errors of any leaf at any
point. In this technique, the active imaging region of an
EPID is divided into a number of small rectangular regions
of interest, each of which is centered at a point at which the
leaf positioning accuracy is to be examined (Figure 2-24).
Every region of interest here acts as a finite-sized detector,

and the integral signal from it can be processed based on
the pre-established relation between the integral signal and
the leaf displacement at the point. The EPID-based system
also allows us to take the dosimetric influence of the adja-
cent leaves into account. For this purpose, the integral sig-
nal at a region of interest is expressed as a weighted sum of
the contributions from the displacements of the leaf above
the point and the adjacent leaves. The linear coefficients of
the system equations are determined by fitting the integral
signal data for a group of predesigned MLC leaf sequences
to the known leaf displacements that are intentionally intro-
duced during the creation of the leaf sequences. Once the
calibration is done, the system can be used for routine MLC
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FIGURE 2-23.  Relative output versus the displacement of leaves 20A, 20B, 10A, and 10B from
their desired positions. The symbols are the measured data, and the solid lines are the least square
fitting of the corresponding data sets. Reproduced with permission from Yang Y and Xing L.154

EPID

ROI

EPID

ROI

FIGURE 2-24.  Diagram of the geometric setup using an electronic por-
tal imaging device (EPID) to examine leaf positioning accuracy. (To view
a color version of this image, please refer to the CD-ROM.)



leaf positioning QA to detect possible leaf errors. Table 2-
1 shows a set of test data obtained using the technique.
Overall, our results show that the proposed technique is
superior to the conventional edge-detecting approach in
two aspects. First, it deals with the problem in a systematic
approach and allows one to take into account the influence
of the adjacent MLC leaves effectively. Second, it has a much
higher signal-to-noise ratio and is thus capable of quanti-
tatively measuring extremely small leaf positional dis-
placements. The technique can effectively detect a relative
lead positional error as small as 0.1 mm at an arbitrary point
within the field in the absence of an EPID setup error and
0.3 mm when this uncertainty is considered.

IMRT Treatment Plan Validation 
The tasks of patient-specific QA can be divided into geo-
metric and dosimetric verification. The former is concerned
with the geometric accuracy of the IMRT beams, includ-
ing isocenter and portal verification. The dosimetric veri-
fication includes a quantitative check of fluence maps,
radiation doses at multiple points, and, in some cases, the
dose distribution. Currently, the dosimetric verification is
primarily done experimentally.

Geometric Verification
A pair of orthogonal simulation films (or digital recon-
struction radiographs [DRRs]) is used to verify the patient
position by comparison with portal films. In 3DCRT, a por-
tal image is taken using the double-exposure technique,
one with the customized radiation port and the other with

a larger rectangular open field, so that both the field bound-
ary and selected patient anatomy can be visualized. A sim-
ulation image for an IMRT field can be created as well using
the MLC boundary as the port of the radiation field. An
example of such a portal image for an IMRT head and neck
treatment is shown in Figure 2-25. For portal image expo-
sure, an MLC field that defines the field boundary needs to
be extracted from the IMRT leaf sequence file. The MLC-
defined field aperture can be appended to the DRR to be
displayed together with the patient’s anatomy. The DRR in
the beam’s eye view, as shown on the left in Figure 2-25, is
used as a reference for comparing with the portal image for
target localization during the treatment.156

Dosimetric Verification and Independent Dose and
Fluence Map Calculations 

No consensus has emerged regarding what dosimetric quan-
tities need to be examined to validate an IMRT treatment
plan. Patient-specific dosimetric QA typically consists of
dose measurements at multiple points and fluence map
measurements. Some institutions also perform film dosime-
try for each patient treatment. Because of the inherent com-
plexity of the problem, it may be some time before definitive
recommendations come from national organizations. In
general, the goal of the dosimetric verifications is to ensure
that the delivered dose distribution agrees with the one
from the treatment planning system. The descriptions on
equipment and procedure for these measurements have
been the subject of a few recent review articles. The fun-
damental philosophy of IMRT QA and our experience with
computer-based patient-specific QA are presented here.

First, one should note that the 3DCRT approach based
on point dose verification is insufficient to validate an IMRT
plan because of the independence of the involved beam-
lets. In 3DCRT, verification is mainly concerned with the
MU calculation for each incident field. An independent
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TABLE 2-1.  Detected Leaf Positional Errors with Different
Intentionally Introduced Errors for Different B-Bank Leaves at
Two Locations

Location Leaf Number IIE, mm DLPE, mm

X = −10 cm 16B 0.3 0.31
20B 1.6 1.55
23B −0.5 −0.51
31B 0.1 0.11
33B 0.4 0.42
34B 0.5 0.49
37B −0.4 −0.42
44B −0.2 −0.18
45B 2.3 2.37
50B −0.5 −0.50

X = 0 cm 13A 0.8 0.76
14A −0.2 −0.19
19A −1.2 −1.20
22A −0.1 −0.09
27A 2.7 2.66
31A 0.1 0.11
39A −0.8 −0.79
44A 0.2 0.22
45A −0.3 −0.28
46A −1.8 −1.81

DLPE = detected leaf positional error; IIE = intentionally introduced error.

FIGURE 2-25.  Top: A left digitally reconstructed radiograph left with
the field boundary of the IMRT field. A double-exposure portal image
for the same field is shown on the right. Bottom: An anterior posterior
digitally reconstructed radiograph left with the field boundary of the
IMRT field.  A double-exposure portal image for the same field is shown
on the right. These images are used by physicians to verify the maxi-
mum extent of the IMRT treatment fields.



calculation of the dose or MU at a point based on primi-
tive machine data is recommended by AAPM Task Group
40.141 Because the fluence of a uniform or wedged field is
spatially correlated, information of the dose at a point can,
in principle, be used to estimate the dose in other points
provided that the off-axis information is known. However,
this is not the case for intensity-modulated fields because
the weights of the beamlets across a field are independent.
The correctness of the dose at a spatial point warrants, at
most, only the correctness of the beamlets passing through
or nearby that point. To validate an IMRT treatment plan,
the spatial distributions of the beamlets must be verified
in addition to the point dosimetric check.

In practice, the above two tasks can be achieved by the
verification of point dose(s) and fluence maps. The flu-
ence map of an incident beam is usually normalized to
the maximum beamlet weight in the beam. For a given
intensity-modulated field, the verification of the fluence
map or beamlet correlation ensures the correctness of the
doses at other points once the dose(s) at one or more
points inside the field is examined. Together with the point
doses, they provide information on the integrity of the
IMRT fields.

We now discuss how to efficiently carry out the two types
of tests. Obviously, the most robust method is to measure
the point doses and fluence maps to validate an IMRT plan.
As depicted as the dashed lines in Figure 2-26, the approach
checks both planning and delivery. Its drawback is that an
intensive effort is needed to carry out the measurement for
each field or patient. Alternatively, one can separate the QA
of the delivery and planning systems, as illustrated by the
solid lines at the bottom. Although QA of the delivery sys-
tem is imperative, its goal should be practically achiev-
able by periodical checks rather than actual measurement
before each patient’s treatment. The division of IMRT QA
into machine QA and patient-specific QA allows us to check
the integrity of an IMRT treatment plan by using computer

calculation, simplifying the pretreatment QA. In fact, the
same philosophy has been used in 3DCRT over the years,
in which a manual calculation is often used instead of actu-
al point dose measurement to validate the patient-specific
MU settings.

Algorithms to perform the independent point dose and
fluence map calculations for IMRT have been reported recent-
ly.157–162 Here a general formalism for the IMRT point dose
check used at Stanford University Hospital (the software,
IMSure, has been commercialized by Prodigm Inc., Chico,
CA) is described. In this approach, the dose at an arbitrary
spatial point is expressed as a summation of the contribu-
tions from all of the beamlets with the amplitude of each
beamlet modulated by a dynamic modulation factor. The
dynamic modulation factor represents the fractional time
that the beamlet is “open”during the dynamic delivery process
and can be computed once the MLC leaf sequences are
known.159 The dose at a point (x, y, z) is written as

(18)

where the D0
m is the dose contribution to the calculation

point per MU from the m-th beamlet when it is open, MU
is the total monitor unit, and Cm is the dynamic modula-
tion factor. When the MLC leaf transmission and head scat-
ter effects are taken into account, Cm can be calculated by160

(19)

with

(20)
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where fk is the fractional MU of the k-th segment and Ak

is the radiation field shape of the k-th segment. Scm,k is the
head scatter factor of the beamlet m in the k-th segment,
Sc´ is the head scatter factor for the rectangular field defined
by the jaws, and α is the average transmission factor. The
head scatter factor Scm,k for each beamlet in a segment is
calculated using the three-source model described earli-
er.124

Computer verification of the fluence maps or the MLC
leaf sequences can be done similarly. The software reads in
the leaf sequences and simulates the motion of the MLC
leaves.163 The computed fluence map is then compared
quantitatively with the intended map from the treatment
planning system. A set of predefined QA indices are intro-
duced to measure the “closeness” between the computed
and the reference maps. The implication of the simulation
is twofold. By comparing the recalculated fluence map with
that from the planning system, it examines the function-
ality of the leaf sequencer of the planning system and ensures
that the leaf sequence is executable and correct. It can also
detect possible errors that occur during the transfer process
of the leaf sequence file from the planning computer to the
MLC workstation. The goal of the simulation is to warrant
that, assuming that a rigorous independent QA of the MLC
system has been performed so that the dynamic MLC can
accurately execute the instruction of a leaf sequence file,
the execution of the leaf sequence will generate the desired
fluence map should it pass the simulation test.

Because of the simplicity and reliability of computer-
based IMRT plan validation, it becomes clinically practi-
cal to enforce QA of the point doses and fluence maps on
an individual patient or field basis. Furthermore, the method
is valid for both step-and-shoot and dynamic deliveries. The
utility of the computer verification has been demonstrated
by the many clinical IMRT cases at many institutions, and
its widespread use should simplify the QA procedure.
However, it is important to keep in mind that experimen-
tal measurement is the only reliable source for IMRT plan
validation. Any computer-based validation tool must be val-
idated by experimental means before its clinical use.

Special IMRT Techniques and Machine
Limitations 

Concurrent Boost 
One of the advantages of IMRT is its ability to deliver dif-
ferent dose levels to different regions simultaneously so that
target volumes with different prescription doses can be planned
and delivered together (see Chapter 18.7, “Simultaneous
Integrated Boost: Emerging Technology”).96,164 This approach
has several potential advantages. Besides the efficiency of plan-
ning and delivery with a single plan, the resulting dose dis-
tribution can be more optimal. The conventional sequential
boost strategy employs two or more independent plans in

which the initial fields cover the elective regions and smaller
boost fields focus on the primary target. The boost dose is
often limited by the tolerances of nearby OAR, which have
been given a significant amount of radiation. If planned simul-
taneously using IMRT, it is possible to distribute the dose
evenly among fractions, and the system also has a greater
degree of freedom to optimize the intensity among many
beams. There are biologic advantages as well; for example,
the shortened treatment course and increased dose per frac-
tion to primary tumors can often be translated into a high-
er biologically equivalent dose, thus increasing the probability
of local control.

Treatment of Large Tumors
The treatment of large tumors necessitates the use of large
treatment fields. Depending on the implementation of the
MLC by the linear accelerator vendors, the maximum field
size formed by dynamic MLC may be different from those
imposed by the collimators (jaws). Typically, the maximum
field size is much smaller. For example, in the Varian MLC,
the jaws and the MLC carriages do not move with the leaves.
The leaf length in the current model of the MLC is 14.5 cm
(projected at the isocenter). Given that each leaf pair must
travel from the left boundary to the right boundary of the
beam aperture and the back end of any leaf cannot travel past
the edge of the jaw, the maximum width of the field aperture
that can be accommodated in one sweep of leaves is also lim-
ited to 14.5 cm. The maximum IMRT field size that can be
delivered in one sweep is 40 × 14.5 cm for an 80-leaf MLC
(or a 120-leaf MLC) or 26 × 14.5 cm for a 52-leaf MLC.

To treat a target volume wider than 14.5 cm, an incident
field must be split into two or more subfields unless some
special techniques are used.165 A simple step “break” in the
middle, as is usually done for static treatments with MLC,
may be implemented. Although this is certainly feasible,
it could lead to field matching problems because uncer-
tainties in patient setup and leaf positioning may cause
undesirable hot or cold spots in the junctioning region.
Given that the intensity varies across the field in IMRT any-
way, it is natural to consider splitting the beam into com-
ponents with overlap between them having variable intensity
in the overlap region. A simple dynamic “feathering” tech-
nique for splitting large fields has been proposed by Wu
and colleagues.166 In this method, the intensity-modulated
field is divided into two (or more) components. The com-
ponents overlap each other, and the intensity gradually
decreases in the overlap region for one component and
increases for the other. The sum of intensities remains the
same as for the original field. Each component is delivered
using the sweeping window technique with the dynamic
MLC. This method provides a smooth transition from one
field component to the next, thereby eliminating the field
junction problems. The dynamic feathering technique may
also be applied to split large static fields to minimize the
junction problem.94,167 The feathering technique has been
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extended to treat the whole abdomen area, in which split-
ting into more than two beams in the leaf motion direc-
tion may be necessary. Also, field sizes larger than 40 cm
may be required in the cephalad-caudad direction, leading
to the use of multiple isocenters, and feathering (not split-
ting) is helpful.168

Dose Matching of an IMRT Plan with a 3DCRT or
an IMRT Plan

One of the important problems in RT of breast cancer,
Hodgkin’s disease, head and neck cancer, and cervical can-
cer is the matching of an IMRT dose distribution for the
treatment of part of the target volume(s) with a conven-
tional 3DCRT or IMRT plan for the treatment of a differ-
ent portion of target volume(s). Ideally, dose optimization
of the second part should take into account the existing
dose from the previous plan to optimally match the two
dose distributions.94,169

The two treatment plans that need to be matched are
generally produced sequentially. The first plan used for
treating part of the tumor volume(s) is obtained with the
consideration of the second plan. To reduce the sensitivi-
ty of potential setup errors, an attempt needs to be made
to “blur” the penumbra or dose gradient in the direction
perpendicular to the matchline. Specifically, instead of a
sharp dose gradient, the dose is allowed to extend by an
additional 1.5 to 5 cm in the direction perpendicular to the
matchline. In this transition region, the dose is forced to
fall off linearly. The overlap is generally determined by the
desired sensitivity against setup error. After the first plan
is done with the extended transitional dose gradient region,
the second IMRT plan is optimized with consideration of
the existing doses of the first plan. The goal of the second
dose optimization is to obtain an IMRT plan that yields a
uniform composite dose distribution in the target vol-
ume(s) and (including the transitional regions) while spar-
ing the sensitive structures. The approach takes advantage
of the state-of-the-art intensity modulation and dose opti-
mization techniques and provides an effective solution to
the timely clinical problem of IMRT dose matching. In
addition to better dose uniformity in the target volumes in
the matchline region, it reduces the sensitivity of the doses
to setup uncertainties in the matchline region. The tech-
nique is not yet available in commercial planning systems
but should be implemented in the near future.

Radiation Protection Issues
Generally speaking, IMRT tends to use more beams (than
traditional approaches) to conform the isodose curves to
the shape of the tumor volume. As a consequence, a larger
volume of normal tissue is exposed to lower doses as opposed
to a smaller volume of normal tissue irradiated by higher
doses in 3DCRT. In addition, the number of MUs is often
increased by a factor of 2 to 3 owing to dynamic intensity

modulation, increasing the total-body exposure, which may
increase the risk of secondary malignancies.170,171 Hall and
Wuu theoretically compared IMRT and 3DCRT and sug-
gested that both factors tend to increase the risk of secondary
cancers.172 Altogether, IMRT is likely to almost double the
incidence of secondary malignancies compared with con-
ventional RT (from about 1 to 1.75% for patients surviving
10 years or more). The risk may be larger for patients with
longer survival rates (and for younger patients), but the ratio
should remain the same (see Chapter 3 “Radiobiology of
IMRT” and Chapter 30 “Pros and Cons of IMRT”).

Reduction of the number of segments using more
advanced dose optimization techniques and/or appropri-
ate shielding of the treatment room are crucial to reduce
the potential risks to hospital personnel. The National
Council on Radiation Protection and Measurements has
developed an empiric method for designing shielding
against ionizing radiation that will protect workers and the
general public from harmful radiation exposures.173,174

These methods have been used for several decades, and
additional information that can be used in conjunction
with these methods has since been published.175–177 A thor-
ough study of IMRT shielding design has been presented
by Mutic and colleagues178 and Low.179

Summary
Institutions worldwide are attempting or planning to inte-
grate IMRT technology into their clinics. Before IMRT imple-
mentation, it is important to understand the physical
principles behind the overall process of inverse planning
and dynamic deliveries. This will help in making better deci-
sions regarding which system best suits each clinical envi-
ronment and facilitates the implementation process. The
efficiency and quality of IMRT treatment depend on many
factors. At this point, it seems that timely developments of
inverse planning and QA techniques are highly desirable to
make IMRT a truly superior and robust treatment modal-
ity. With these advancements, it is anticipated that IMRT
will provide improved dose distributions with less effort in
treatment planning, delivery, and verification.
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